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Abstract

As utility companies develop and incorporate new technologies, such as moving

to utility Internet technology based architecture and standard; it is crucial that we

do so with history in mind. We know that traditional utility protection and control

systems were not designed with security in their top priorities. This presents a danger

in an environment where near real-time responses are required to ensure safe opera-

tions. As a consequence, system security becomes a burden to the system rather than

necessary protection.

Unfortunately, technology implementation is not the only concern. The num-

ber of utility privately-owned companies has multiplied as the market has moved to

a deregulated market in an effort to fragment the traditional monopolies that ruled

the industry. Additionally, as new technologies replace or are coupled with legacy

systems; new risks to our national assets are incorporated. We have to keep in mind

recent events that have proven that our nation is vulnerable to attacks that could

severely hinder our economy. Unfortunately, this is easier said than done. The condi-

tions under which these systems operate make it almost impossible to make updates,

replace components, or whole systems, without endangering normal operations due

to malfunctions, installation and calibration errors, or immature technology.

This research proposes an alternate method to do this technology merger safely.

This method uses new concepts, such as the trust system and power grid compart-

mentalization to dramatically increase protection of the network. The great benefit of

this method is that it can be implemented gradually. During this thesis, we will trans-

form a SCADA network compartmentalization problem and a trust system strategic

placement problem into an optimization problem, by methodically designing a math-

ematical model and later applying linear programming algorithms and techniques to

solve it.
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An Efficient and Effective Implementation

of the

Trust System

for Power Grid Compartmentalization

I. Introduction

1.1 Background

One of humanity’s greatest mistakes is not to learn from history. It is our duty

as a country to take events from the past and used them to better prepare ourselves

so that they are not repeated. This is an important principle in general, furthermore

it is vital when dealing with our country’s critical infrastructure protection. History

has shown that we, as a nation, are vulnerable to attacks on our resources and the

elements that control them.

The research introduced in this paper affects a sector of our nation that is

vital, the critical infrastructure sector. This sector is composed of industries that

make our lifestyle, as we know it, possible. Major components include the energy

industry, such as electricity, gas, petroleum, in its different phases of the life cycle,

water management and transportation management. The list of industries that have

been considered a part of nation’s critical infrastructure has evolved over the years.

Most of the industries included in the critical infrastructure list have one thing

in common; they all require near real-time monitoring. When a malfunction is de-

tected, decisions need to be made immediately in order to prevent major incidents

and catastrophes from occurring. An instance of this unique operational characteristic

can be found in the electric power industry.

The electric power industry has become so important for our society that it has

become the focus of large efforts to prevent power system collapse and electric service
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stoppages. However, history has shown that these incidents are not part of a science

fiction movie. They are a reality; and when they occur, they have extremely costly

consequences. Unfortunately, the demand on the power system increases over time

and this increase puts the system at a greater risk of instabilities and collapses. As this

thesis will show, there have been instances where minuscule failures have escalated out

to larger regions and become major catastrophes. These events unfortunately have

not only occurred throughout the world but in our own country as well. These recent

collapses have revealed the urgent need to stabilize power systems by incorporating

better technologies that enhance not only the local protection at the field level, but

also at a system-wide protection level [18].

At the heart of the electric industry and many other critical utility industries,

lies a system that is essential to its performance, the Supervisory, Control and Data

Acquisition System (SCADA). This system manages these complex networks, often

with thousands of nodes monitored. They are capable of reliable and accurate near

real-time reactions (sometimes within thousandths of a second) to normal and abnor-

mal variations, and emergency situations as well. Additionally, response time is not

the only concern. Accuracy and reliability are key concerns, as well.

The research reported in this thesis is relevant to these two separate but strongly

tied systems, critical infrastructures, specifically the electrical utility grid, and the

SCADA system.

1.2 Problem Statement

This research will create a method and tool to safely compartmentalized a util-

ity networks, namely SCADA, into regions. The communication within and between

regions will be protected by trust nodes, which will provide firewall, and intru-

sion detection capabilities, without disrupting time-sensitive protection and control

systems.
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The importance of compartmentalization is clearly emphasized by incidents

where a proper network topology could have been the difference between a local mal-

function and an international blackout. The “Northeast Blackout of August 2003” is

the benchmark of the possible consequences of a malfunction within a single utility

service such as electricity. Even though the initial stages occurred in a small area in

Ohio, at the end the blackout affected 10 million people in the Canadian province of

Ontario and 40 million people in eight U.S. states. We will see in chapter 2 that the

sequence of malfunctions; if they had appropriately isolated the failures in the initial

stage the cascading effect could have been stopped at its roots before it became an

international incident. Figure 1.1 shows the region where the first malfunctions ap-

peared during the Northeast Blackout of August 2003. Perhaps if a different network

topology or compartmentalization had been in place, the instability could have been

isolated to avoid its propagation to a larger area.

Figure 1.1: Initial Stages Region of Blackout of 2003 [25]

In addition to this, SCADA systems have traditionally been manufactured using

proprietary systems and protocols without any regard for interoperability or industry

wide standards. However, in recent years the utility community has drifted away

from this architecture toward a more open network, communication standards, and
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Table 1.1: Sources and Motivations for Utility Disruptions and Attack [9]
Source Reason

Industrial Sabotage Financial Advantage in insider trading or competing
or theft vendor partnerships

Concentrated physical Destruction, terror, or activism
and cyber attack

Vendor compromise Easier to target supplier than the defended infrastructure
itself

Technical design error Hardware or code; network design, installation and
or environmental configuration; or interferences from other technologies in

influence the environment
Natural disasters Earthquakes, tornadoes, volcanoes, fire, thunderstorms
Operator error Misjudgment, misconfiguration, or failure to remember

operational details resulting in dangerous and costly results

commercial-off-the-shelf components. This has made the industry vulnerable to new

threats, such as hacker attacks, other malicious code, and even what is known as

cyber-terrorism.

The system is vulnerable not only to traditional equipment malfunctions or

operator mistakes. Now, it is also subject to industry deregulation risks and exter-

nal attacks such as denial of service attacks. Unfortunately, the systems are often

configured with little regard for security, and with these new threats security has be-

come a new stronger concern and not just a network burden that increases response

times. Table 1.1 summarizes very briefly some of the attacks that the utility industry

networks are vulnerable to.

The exposure of SCADA systems to cyber attacks, incidents such as the blackout

of 2003 and its cascading effects, and the multiplication of independent companies

present in the utility industry, are sufficient reasons to investigate ways to protect

our nation’s vital functions. As stated in the opening paragraph of this chapter, the

approach taken in this research is to investigate the compartmentalization of a SCADA

network in an electric utility network. Additionally, we will use the suggestion made

by Coates, et al, of a trust system that performs important security tasks without

exceeding the important time constraints.
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1.3 Research Objective and Hypothesis

The purpose of this thesis is to implement and evaluate the suggestions ex-

pressed in the thesis document “Collaborative, Trust-Based Security Mechanisms for

a National Utility Intranet” [5], published by Major Gregory M. Coates, United States

Air Force. He suggests the implementation of a trust system throughout the power

grid and inside a SCADA facility. This thesis will also utilize some of the results

from the work “Evaluating Security and Quality of Service Considerations in Crit-

ical Infrastructure Communication Networks” [28] by Captain Gregory R. Roberts,

United States Air Force. He tested the use of several communication protocols at

varying background traffic loads. The results incorporated into this research are the

refinement of response time thresholds and time constraints.

In addition to combining these two results, the author proposes the compart-

mentalization (or sub-grouping) of the network (or grid) to provide isolation that may

be helpful when a failure is detected and, in that way, minimize or avoid a cascading

failure. During the research, trust nodes will be added to strategic locations in

the networks such that the communication between groups is always monitored and

secured. The system will evaluate the propagation delay and also the delay resulting

from the installation of the trust node to ensure that no constraint is violated.

It is the hypothesis of this author that the compartmentalized network topolo-

gies, and the placement of trust nodes is possible without violating the strict network

time constraints necessary for safe operations.

1.4 Why is this research important?

This research is critical, because the systems that SCADA systems monitor

cannot be stopped or halted in order to implement security upgrades or install new

equipment. The nature of their environment dictates that the system always be

operational. This makes their upgrade or replacement very difficult and expensive.

The solution evaluated allows for a new security mechanism to be fielded incrementally
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without major interruptions of service while increasing the protection the this systems

deserve.

1.5 Assumptions

It is assumed that future utility intranet used in power grid and SCADA net-

works will mimic the network architecture commonly implemented in the corporate

world. Some of the delays such as propagation delays, transmission delays, encryption

delays are assumed to be accurate for this study based on literature available.

In order to make this research possible several assumptions are considered for

the study. I assume the fiber cable is used as the communication means in the grid.

This assumption is important in order to calculate the distance between nodes in the

grid.

1.6 Preview

The layout of this document is as follows:

• Chapter 2 will provide the basic understanding on the four topic affected by this

research, starting from a broader perspective of critical infrastructure, then

we focus on the Electric power industry, SCADA network fundamentals,

and finally on the concept of a trust system.

• Chapter 3 will list the tools utilized during the research and will also describe

the methodology and approach taken to solve the problem on network compart-

mentalization and trust system implementation utilizing Linear Programming

techniques.

• Chapter 4 will present and interpret the results gathered from the experimen-

tation.

• Chapter 5 presents and explains the conclusions derived from the results ob-

tained during the experimentation and make recommendations for future work.

6



II. Literature Review

2.1 Chapter Overview

Chapter two has as goals to review the information necessary to understand the

concepts examined in this research. It provides the necessary background and

complementary material that enables the reader to set the basic foundation , and pic-

ture the environment where the results of this research could be utilized. This chapter

presents this background information using a top to bottom approach, beginning with

critical infrastructure protection, narrowing down to power grid, Supervisory, Control

and Data Acquisition (SCADA) systems and finally narrowing down to the specific

focus of this research, the description of the trust system in SCADA networks.

2.2 Critical Infrastructure

Infrastructure is defined in the American Heritage Dictionary as “the facilities,

or services for a community to function appropriately” [20]. These can be the com-

munication system, utility facilities like water and electric power lines, and public

institutions to include schools, post offices, and even prisons. Fig.2.1 shows instances

of activities that are considered part of our critical infrastructure. In the arena of

U.S. public policy, the term has evolved throughout the years, and many times was

considered to be ambiguous. In a report issued 20 years ago by the Council of State

Planning Agencies, the term was defined as,“a wide array of public facilities and equip-

ment required to provide social services and support to economic activities”. In this

report, the facilities included roads, bridges, water and sewer systems, airports, ports,

and public buildings, and could also include schools, health facilities, jails, recreations

facilities, electric power productions, fire safety, waste disposal, and communications

services.

In 1984, Congress defined infrastructure as facilities with high fixed costs, long

economic lives, strong links to economic development, and a tradition of public sector

involvement [20]. Hazardous waste services were also added to the list. The con-
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(a) Nuclear Plant [25] (b) Oil Refinery [13]

(c) Electric Grid [14] (d) Electric Power Generation [14]

Figure 2.1: Examples of Critical Infrastructures

cern was mainly in the adequacy of the infrastructure to satisfy our country’s needs.

Facilities were many time considered to be obsolete and of insufficient capacity.

Finally, the mid-1990s renewed federal government interest in infrastructure is-

sues due, mainly, to the growing threat of international terrorism. The focus changed

from infrastructure adequacy to infrastructure protection. In 1996, President Clin-

ton signed Executive Order (E.O.) 13010 establishing the President’s Commission on

Critical Infrastructure Protection (PCCIP) [20]. It was here that the term Critical

Infrastructure (CI) was applied for the first time. And it was then that the list of fa-

cilities was narrowed down to a few industries which excluded public housing, private

rail service, schools, and other facilities. E.O. 13010 ended the ambiguity of the term

by listing what it considered to be critical infrastructure. According to this executive

order, these critical infrastructure were:
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• Telecommunications

• Electrical power

• Gas and oil storage and transportation;

• Banking and finance

• Transportation

• Water supply systems

• Emergency services ( including medical, fire, police, and rescue) and

• Continuity of government

This list of activities included in the PCCIP final report included facilities owned

by private companies and others actually come from other countries such as gas lines

that come from Mexico or the electricity distribution lines that come from Canada

[15]. This is why our government and more specifically the Department of Homeland

Security Science and Technology Directorate conduct research in many areas including

cyber security.

As a response to the report, President Clinton signed the Presidential Decision

Directive (PDD) 63 [20]. The goal of this directive was to be able to protect our

critical infrastructure from intentional disruption. PDD-63 directed specific federal

agencies to lead this security efforts which are shown in Table 2.1. It is noteworthy

to mention the addition of “cyber-structure”to the list.

As a result, a national plan for critical infrastructure was created [20]. This plan

defines critical infrastructure as “those systems and assets (both physical and cyber)

so vital to the Nation that their incapacity or destruction would have a debilitating

impact on national security, national economic security, and/or national public health

and safety”.

The attacks of September 11, 2001 gave ground to the drafting of E.O. 13228

signed by President Bush and the USA PATRIOT and Homeland Security Acts [20].

E.O. 13228 established the office of Homeland Security and the Homeland Security
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Table 2.1: Critical Infrastructures and Lead Agencies as layed out in PPD-63 [20]
Lead Agency Critical Infrastructure
Dept. of Commerce Information and communications
Dept. of Treasury Banking and finance
Environmental Protection Agency Water Supply
Dept. Of Transportation Aviation, Highways, Mass Transit,

Pipelines, Rail, Waterborne Commerce
Dept. of Justice and or FBI Emergency law enforcement services
Federal Emergency Emergency Fire Service
Management Agency Continuity of government services
Federal Emergency Public health services, including prevention,
Management. Agency surveillance, laboratory services, and personal

health services
Dept. of Energy Electric power, Oil and gas production and

storage

Council. The office is the lead in coordinating efforts to protect our critical infrastruc-

ture throughout the different government agencies. This Executive Order provides a

list of facilities which include previous facilities but it also adds to the list nuclear

sites, special events and agriculture to the list which had not been part of the list

before. The USA Patriot and Homeland Security Acts are important because they

created the National Strategy for Homeland Security.

According to the new National Strategy there are 11 sectors and 5 key assets to

the economy which are considered part of our National Critical Infrastructure, which

encompass the following sectors [20]:

• Agriculture and food

• Water

• Public Health

• Emergency services

• Defense industrial base

• Telecommunications

• Energy
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• Transportation

• Banking and finance

• Chemicals and hazardous materials

• Postal and shipping

The key assets are the following:

1. National Monuments and icons

2. Nuclear Power Plants

3. Dams

4. Government facilities (offices and governmental departments)

5. Commercial key assets (i.e. major skyscrapers)

As we can see, the identification of our critical infrastructures is not an easy

task. The term itself has been subject to continuous modifications, economics sectors

have been added to the list, while others have been removed. Table 2.2 illustrates

how the list has evolved throughout the different directives, executive orders, and

other documents that modified due to needs mandated by external situations, such

as terrorist attacks and new technologies. The responsibility of identifying these

assets has been shared between the private sector and the federal agencies. PDD-63

obligated each federal agency to coordinate efforts with entities in the private sector

to assess their very own vulnerabilities to physical and cyber attacks.

Critical Infrastructure is a subject that concerns not only the sectors involved,

but almost any other sector of our nation’s economic machine. To emphasize its

importance, the following lines were added to the official definition, “An infrastructure

so vital that its incapacity or destruction would have a debilitating impact on our

defense and national security ” [17].

Critical Infrastructure represents the bird’s eye view of the topics covered in

this research. The Power Grid is the specific system where this research applies.

11



Table 2.2: Evolution of the Critical Infrastructure List [20]
U.S. Government Reports and Executive Orders

Infrastructure CBO NCPWI E.O.13010 PDD-63 E.O.13228 NSHS NSPP HSPD-7

(1983) (1988) (1996) (1998) (2001) (2002) (2003) (2003)

Transportation X X X X X X X X
Water Supply/Waste X X X X X X X X
Water Treatment

Education X
Public Health X X X X
Prisons X
Industrial Capacity X
Waste Services X
Telecommunications X X X X X X
Energy X X X X X X
Banking and Finance X X X X X
Emergency Services X X X X X
Government Continuity X X X X X
Information Systems X X X X X
Nuclear Facilities X
Special Events X
Agriculture/Food supply X X X X
Defense Industrial Base X X X
Chemical Industry X X X
Postal/Shipping services X X X
Monuments and icons X X
Key Industries/Tech Sites X
Large Gathering Sites X

2.3 Electrical Power System or Power Grid

The electrical transmission system (or Power Grid) developed in North America

is one of the greatest engineering achievements of the past 100 years [25]. It connects

200,000 miles of transmission lines which operate at a minimum of 230,000 volts.

It has a generating capacity of 950,000 megawatts and it serves over 100 million

customer. The infrastructure itself represents an asset worth one trillion dollars.

Originally, power systems were created as self-sufficient units. Power consump-

tion was easily satisfied by the production. In a case of a severe failure, a system

collapse was unavoidable and meant a total blackout and interruption of the supply

12



for all customers. Since the system was small, synchronization of the generators and

restoration of the service was easily done [38].

Even though the power system in North America is commonly referred to as

“power grid”, it is actually divided into three distinct grids or“interconnections”. Fig.

2.2 show the interconnections mentioned above. The interconnections are isolated

from each other with the exception of small direct current (DC) ties.

Figure 2.2: North America power grid major interconnections [25]

The reliability of the power grid is crucial to our economy, since our society

has come to depend on the electricity it produces for an immense number of activ-

ities. Electricity is an essential resource for health, education, transportation, and

welfare, as well as national security. Additionally, it powers our heating, cooling, and

lighting, computers and electronics, communications, transportations, etc. We have
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come to assume the availability of electricity in our daily life and as we integrate new

technologies into our daily life we produce more demand for this service. However,

we seldom experience blackouts and when we do, they are caused by minor incidents

such as a car hitting a power pole, a cable damaged by a lightning storm, or a crew

member that affects small areas. But we rarely experience a massive outage covering

thousands of square miles and for a period of time larger than a few minutes.

However, reliable electricity presents a complex technical challenge because of

the convolutedness of the system of the system that monitors its proper functioning

even at normal days and also because of the time constraints that it operates under.

Fig. 2.3 shows the process followed from generation to consumption. At genera-

tion stations, electricity is produced at voltages of 10, 000 to 25, 000 volts, regardless of

the nature of the generation stations ( nuclear, oil, hydro power, geothermal, etc) [32].

Next, it is stepped up to voltages varying from 230, 000 to 765, 000 volts in order to

reduce cost and losses when transmitted through large distances. Switching stations

and substations provide interconnection between transmission lines. This is named

“power grid” because they form a network of lines and stations. Finally, when the

energy arrives to the load center it is“stepped down”to lower voltages for distribution

to consumers; for industrial and commercial consumers it is normally reduced between

12, 000 to 115, 000 volts and 120 and 240 volts for residential users. All these steps

happen almost instantly because the electricity used the moment is generated.

Figure 2.3: Basic Components of the electric power grid infrastructure [32]
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As the population grew, consumption grew as well; the demand for power has

grown at an accelerated pace beyond that of production. This continuous growth in

generation and demand has inherently provoked an increase in the complexity and

size of the power system. Unfortunately, these are not the only consequences of this

growth. There is also an increased risk of instabilities such as:

• Frequency Instability. This situation is caused by the incapability of the

system to maintain safe frequency thresholds (i.e. 60Hz).

• Voltage Instability. When this situation exists the system is not able to

support voltage requirements under normal operations or to recover from dis-

turbances [32].

• Transient Angular Instability or Generator’s Out-of-step Situation.

This condition is present when the system is incapable of sustaining phase syn-

chronization among the generators generally after severe disturbances [32].

• Local mode of Small-Signal Angular Instability Similar to the situation

described above, however it is present at one station or in a small part of the

power grid. Also, it is present under small disturbances which occur continually

under small variations in loads and generation [32].

Many times, the system is not able to recover from these conditions, and power

outages are sometimes present in small areas and then cascade out to larger regions

since the imbalance and instability between demand and generation rises after black-

outs occur.

2.3.1 Power Outages. Power outages are also known as power failures, or

blackouts. There are several types of power outages, categorized mainly by their

duration and the effect of the power loss:

• Dropout. This is the shortest of the power losses. Power is restored quickly

once the fault is detected, and often the system automatically fixes the fault [32].
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• Brownout. The name comes from its light dimming effect. This is produced by

a drop of voltage. This type of malfunction is particularly damaging to electric

motors [32].

• Blackout. This is the most severe malfunction, which refer to the total loss of

power to an area. Power Outages can last hours and sometimes days, depending

on the configurations of the Electrical Grid or the cause of the malfunction [32].

2.3.2 Power Outage Effects. Our society has become completely dependent

on Electrical Power, there is no place or activity that does not utilize this source

of energy. As a consequence, power failures are particularly critical at sites where

the environment and public safety are at risk; such as hospitals, sewerage treatment

plants, mines etc [20].

2.3.3 History of Power Outages. Unfortunately, power outages are not rare

incidents in modern history. In the last 40 years, there has been a minimum of 20

major blackouts, these include only the wide-scale power outages. The following is a

short list of some of the power outages that have occurred since 1965.

2.3.3.1 Northeast Blackout of 1965. This power outage affected

Ontario, in Canada and Connecticut, Mass., New Hampshire, Rhode Island, Vermont,

New York, and New Jersey in the United States [35]. The blackout left close to 25

million people and 80, 000 square miles for almost 12 hours. Fig. 2.4 shows the region

affected by this incident.

The reason for its failure is attributed to human error [35]. A protective relay

on one of the transmission lines was set to a much lower value instead of set to trip

and protect the line if the flow of power exceeded the line’s capacity. Its origin was

located in the Niagara generating station in Southern Ontario.
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Figure 2.4: Blackout of 1965 in North America [35]

2.3.3.2 Great Storm of 1987. On October 15/16 of that year, the

most famous weather event of the 20th century in Europe occurred [33]. This storm

had gusts between 70 and 100 knots. This became south western England’s worst

storm since the Great Storm of 1703. It is estimated it killed 18 people in England, 4

people in France and it is estimated that 15 million trees were lost in England alone.

The storm left many about 150, 000 households without telephone communications

and many hundreds of thousands without power, causing a total of 2.3 million of

power disconnection days. Connection days is a measure used by the electricity in-

dustry to assess the combination of the number of disconnected properties with the

length of the interruption. Fig. 2.5 shows the path that the storm followed.
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Figure 2.5: Path followed by the Storm on 1989. [33]

2.3.3.3 Geomagnetic Storm of 1989. A geomagnetic storm is a

temporary disturbance of the Earth’s magnetosphere which can be caused by changes

in the space weather, related most of the time to solar flares and other solar phenom-

ena, which produce a solar wind shock [34] . When the shock travels toward the earth

it brings with it pressure changes that disturb the electric field of the earth. The

duration of a magnetic storm is normally 24 to 48 hours, however there have been

cases where the storm has lasted many days. Fig. 2.6 shows how the sun causes a

geomagnetic storm.

Disturbances caused by solar activity can disrupt power grids. When the Earth’s

magnetic field captures ionized particles carried by the solar wind, geomagnetically

induced current (GIC) can flow through the power system, entering and exiting the
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many grounding points on a transmission network [34]. GICs are produced when

shocks resulting from sudden and severe magnetic storms capture portions of the

Earth’s surface to fluctuations in the planet’s normally stable magnetic field. These

variations create potential voltage differences between grounding points, and these

cause GICs to flow through electrical transformers, power lines, and grounding points.

Unfortunately, only a few amps are needed to disrupt transformer operations. How-

ever, over 100 amps have been measured in the grounding connections of transformers

in affected areas. It is important to note that many portions of the power grid in

North America are vulnerable to geomagnetic storms. Much of the grid is located in

northern latitudes, near the north magnetic pole.

Figure 2.6: Solar Storm and Earth’s magnetic Field [34]

The Hydro Quebec outage resulted from the linked malfunction of more than 15

discrete protective-system operations [34]. From the initial event to complete black-

out, only one-and-a half minutes elapsed. Fortunately, the outage happened during

low demand conditions and was contained within the province’s borders. Otherwise,

it could have spread across the northeastern United States, extending to Washington,

D.C. area.
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2.3.3.4 Northeast Blackout of 2003. On August 14, 2003, large

portions of the Midwest and Northeast United States, and Ontario, Canada, experi-

enced an electric power blackout [25]. The outage affected an area with an estimated

50 million people. Power was not restored for 4 days in some parts of the United

States. Parts of Ontario suffered intermittent blackouts for more than a week before

full power was restored. The estimated loss in the United States range between $4

billion and $10 billion dollars. Fig. 2.7 shows the region that was left without power.

b

Figure 2.7: Region affected by blackout of 2003 [2]

The blackout itself was the consequence of a sequence of events and system

weaknesses that maybe by themselves could not have lead blackout of such proportions

and could have existed undetected for a large period of time. However, the right

conditions existed so that the chain of malfunctions on that day and escalated up to

the the collapse of the electrical system.
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A group of people from Canada and the United States was directed to lead an

investigation that would reveal the causes of the blackout and provide recommenda-

tions to stop future incidents like this to ever happen again [25]. The group divided

the blackout into phases and identified different causes for each one of the phases

but it is important to understand that early malfunctions triggered the later ones.

Additionally, the causes were classified based on the nature; some were institutional

issues such as deficient practices, lack of adherence to industry policy, and inadequate

management; and also, human and equipment failures.

There are several entities that are key during the Black out, each one with

different functions. Some of theses entities are:

• First Energy (FE) operates a control area in northern Ohio. This company is

composed of seven utility companies in the region.

• American Electric Power (AEP) operates a control area in Ohio just south of FE.

This company is both a transmission operator and a control area operator [25].

• Mid-West Independent System Operator (MISO) is the reliability coordinator

for a region stretching from Manitoba, Canada in the north to Kentucky in the

south, from Montana in the west to western Pennsylvania in the east [25].

• North American Electric Reliability Council (NERC) maintains and develops

operating and planning standards to ensure reliability of a transmission grid.

This organization is divided into ten NERC regions through out Canada and

United States. Fig. 2.8 show the ten regions in NERC and the main connections

that monitor the reliability of the electric grid [25].

• PJM interconnection LLC (PJM)is a Regional Transmission Organization (RTO

). It is currently the largest wholesale electricity market. Perform reliability

coordination functions and along with the MISO are expected to comply with

all aspects of NERC Operating policies [25].

• East Central Area Reliability Coordination Agreement (ECAR) is a region

within the NERC organization that provides reliability oversight [25].
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Figure 2.8: NERC Regions and main connections [25]

A large number of causes and/or weaknesses in the sequence of events during

the initiation of the blackout have been identified. These have been classified in four

groups which are greatly summarized as follows:

Group 1. FE and ECAR failed to assess and understand the inadequacies of

FE’s system particularly instability and vulnerability of the Cleveland-Akron area

[25]. As a consequence, the system operated at inappropriate voltage values. It was

found that no review or analysis was done to establish these values and no long-term

planning was studies were done in the system. Also, no extreme condition assessments

were completely neglected.

Group 2. FE had an inadequate situational awareness and did not understand

the deteriorating condition its system. FE did not have the appropriate tools in order
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to ensure that monitoring tools were reflecting the functional state of the system, and

also lacked back-up monitoring tools to visualize the situation [25].

Group 3. FE failed to ensure that tree growth in its transmission line was properly

maintained and monitored, which caused the outage of three FE 345-kV transmission

lines and one 138-kV line [25].

Group 4. The Reliability organization at the interconnected grid (MISO) failed to

provide real-time diagnostic support [25]. The absence of this real-time data from

Dayton Power and Light’s Stuart-Atlanta companies prevented MISO from detect

security violations in FE’s system and execute relief actions. Also MISO lacked an

effective way to identify the location and significance of transmission line breaker

operations to be aware of important line outages.

The study determined that even though the system was electrically secure min-

utes before the malfunctions began; there was clear evidence that the Cleveland-Akron

areas were highly vulnerable to malfunctions and voltage instability issues [25]. FE

was unable to identify the situation because the company had not perform studies to

determine and understand those vulnerabilities. FE was operating that system very

close to NERC’s operational reliability standards. The system stability could have

been compromised by any number of potentially disruptive scenarios could have. A

system with this little margin to react would leave little room for adjustment, with

few relief actions available to operators in the face of single or multiple contingencies.

The following is a quick snapshot of the series of issues that occurred during the

initial phase of the blackout chronologically, it is not all inclusive:

• It began at 12:15(EDT) when an inaccurate input data rendered Mid-West

Independent System Operator (MISO)’s state estimator ( a system monitoring

tool)ineffective.

• 13 : 31 FE(responsible for the control of Northern Ohio’s area), Eastlake 5

generation unit tripped and shut down automatically.
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• 14:14, the alarm and logging system in FE’s control room failed and was not

restored until after the blackout.

• After 15:05, some of FE’s 345k-V transmission lines began tripping out because

they were touching overgrown trees within the line’s right-of-way areas.

• 15:46, FE, MISO, and neighboring utilities begin to realize that the system was

in jeopardy. At this point, they could have stopped the cascade effect been

avoided by dropping the load around Cleveland and Akron at least 1500 MW.

However, no such effort was made [25].

• Moments later, FE lost key lines in northern Ohio which caused its 138-kV

line to begin failing and in turn loss of FE’s Sammis-Star 345-kV line and it

is this event that triggered the uncontrollable cascade portion of the blackout

sequence. The Sammis-Star line was critical because it shut down the 345 kV

path from eastern to northern Ohio [25].

• By this time, northern Ohio was already blacked out which created an un-

sustainable burden on lines in adjacent areas. Generating units automatically

tripped by protective relay action to avoid physical damage.

The sequence of events during the initial phase of the blackout is briefly dis-

played in Fig. 2.9.

There are a large number of other incidents not shown here for brevity reasons,

the snapshot shows how much little time it is required for a large area to be left

without electricity.

The next section describes the Supervisory, Control and Data Acquisition sys-

tem. The electric grid system operators must keep close and constant watch on the

multitude of things occurring simultaneously on their power system. Because it is

not humanly possible to watch and understand all these events and conditions simul-

taneously, energy management systems use alarms to bring relevant information to

operator’s attention. The alarms draw on the information collected by the SCADA
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Figure 2.9: Timeline of events during the initial phase of Blackout. [25]

real-time monitoring system. Therefore, SCADA systems are an important compo-

nent of the electric system.

2.4 Supervisory Control and Data Acquisition Systems

Supervisory Control and Data Acquisition (SCADA) systems are extremely im-

portant components to the protection of CI’s to include the electric grid. This system

is responsible for the safe daily operations of the nation’s CI. It controls and super-

vise systems such as gas pipelines, water a transportation, utilities, refineries, nuclear

plants, utilities, chemical plants, and other operations vital to any country’s economy.

As explained earlier in this chapter, the nature of these infrastructures makes their

protection and assurance of availability vital to both the US and world economies.

SCADA allows a central location to control and monitor a spread distributed

environment, such as oil, electric, gas field, pipeline system, hydroelectric complex
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located hundreds or even thousands of miles from one end to the other. SCADA

systems make changes on distant process controllers (Supervise), open or close valves

or switches, or monitor alarms (Control); and gather data and telemetry information

(Data Acquisition) to allow for a secure facility location operation [3].

SCADA provides real-time information to enable the management of produc-

tion operations, implement more efficient control paradigms, and improves plant and

personnel safety. SCADA utilizes communication methods to perform its critical

functions such as Directly wired communication, power line carrier, microwaves, ra-

dio, and fiber optic communications [6]. This efficient operation of the facility not

only provides more economic performance by reducing cost while operating at op-

timal conditions, but ensure safety of personnel and millions of people around the

facility [37]. Fig. 2.10 presents a central control station layout.

The rapid escalation of fuel prices has caused the cost of producing power to

escalate rapidly and apparently without control. As a consequence, the efficient and

optimum economic operation and planning of utility and, electric power generation

systems have always occupied an important position in the utility industry. However,

the rising cost is not new to our country; after War World II, the United States began

the installation hydroelectric plants to balance the threat of the already increasing

price of fuel. Parallel to this new source of energy; thermoelectric and nuclear have

also diversified our sources of energy. In addition to this diversification of sources, the

introduction of private companies introduced a new variable into this equation. One

of the few parameters in the industry that seemed too constant was the utilization of

SCADA systems to monitor the efficiency of all these different systems.

The once semi-isolated industrial control offered by SCADA systems which uses

proprietary hardware and software are evolving from this standalone, compartmen-

talized operations into an exposed, networked architectures. SCADA systems have

evolved and are now part of a network that has greater control and supervisory ca-

pabilities of these facilities. The slowly transforming SCADA system uses standard
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Figure 2.10: SCADA master control station [6]

Commercial off-the shelf (COTS) software and hardware. This “standard” system

has helped in reduction of development, operational, and maintenance costs. In ad-

dition to this, SCADA systems have seen a dramatic improvement in their ability

to provide real-time information; critical in the planning, control, supervision, and

decision making functions.

The term SCADA actually defines a system that performs the functions de-

scribed above; however, it is not closely linked to a specific type of hardware, soft-

ware, or configuration of both. SCADA systems have been developed by a variety of

companies that have introduced their own equipment and software. Their version of

SCADA may not be inter-operable with other system of the same name. The inter-
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national community also referred to the equipment as SCADA however, it does not

completely equate to the same system everywhere else.

2.5 Brief History of SCADA

SCADA technology began in the 1960s, when industries began monitoring and

controlling instrumentation remotely. SCADA automated systems combine humans,

computers, communications, and procedures [30]. They needed to reduce manpower

requirements for monitoring of sensors and processes [19]. Early implementations of

SCADA systems utilized proprietary software and communications protocols, enor-

mous mainframe computers, and very specialized equipment. Systems not only lacked

inter-operable but also difficult to maintain. The industry lacked a standardization

mainly due to the high reliability expectations of the system, vendors did not want

to rely on someone else’s equipment to meet those expectations.

One of the most important function is the SCADA system is telemetry. Teleme-

try is the ability to read performance measures from remote locations to evaluate

conditions and perform decision making [3]. In addition to this, activities such as

weather and geophysical research required the collection of data from places where

the presence of a human being was extremely dangerous or not feasible. Or maybe

the facility was located in areas where it was difficult to get crews to live, away from

populated areas. Although, there was technology available to transport telemetry

assets to its remote destinations (i.e., rockets); humans were still needed in the pro-

cess. This led to the development of communications technologies that allow us to

take readings without threatening lives in the process. And it is this communication

system that is called telemetry.

In the beginning, telemetry made use of wired communications, sometimes using

underground cable. This architecture limited the distance that could be monitored,

the number of locations, and also the geographic location where the cable could be

buried.

28



The development of radio signals became the immediate answer to overcoming

hardwiring limitations and slowly made his way in the industry [3]. First, it allowed for

one way communications allowing only to gather data from to remote site and send

to a central location. As a consequence, the central location was not able to send

information back to the remote facility. Nonetheless, radio signals have properties

that make them very attractive to system developers, such as weather immunity.

But the technology was not affordable at the time. As technology evolved and cost

reduced more and more, companies incorporated new technology in their daily critical

operations.

Along with this, radio signals have been improved to the point where two-way

was made possible, this breakthrough allowed the central station to receive data but

also to transmit commands back to the remote terminal [3].

As computer technology matured; computers became the heart of the system

and a trigger for decentralization of the SCADA structure where it made sense to

implement [15]. Control systems consisted of a central minicomputer called Pro-

grammable Logic Controllers (PLC) that communicated with local controllers (which

could be PLC’s as well) that interfaced with motors, pumps, valves, switches, sensors,

etc.

2.6 Time Constraints

The response time thresholds under which SCADA systems normally operate

are usually very small normally in the range of milliseconds [5]. SCADA is a Wide

Area Protection and Control (WAPaC) system, which gathers information from mul-

tiple locations on the system and also provides the controls necessary to respond to

anomalies detected. The location of those supervisory station is usually at great dis-

tances from the anomaly origin location and there may be a time delay. Today’s wide

area communication structure are capable of delivering messages from one location

to multiple locations on the system in as little as 6 ms [5]. This is only one of the

different types of delay native to the system. There are several others that are im-
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portant to account for such as calculation delay, encryption delay, decryption delay,

etc. Table 2.3 shows the customary time constraint thresholds that must be met for

SCADA and utility protection responses.

Table 2.3: Typical SCADA Time operating constraints [5]
Systems Situation Response Time

Substation IEDs; Routine power equipment signal Every 2-4 ms

Primary short measurement

circuit protection Local-area disturbance [6] <4 ms from event detection to sending

and control notification [14]

4 - 40 ms automatic response time

Backup Transient voltage instability Often ≤ 180 ms to convey 14+ trip signals to

protection and disconnect generators at the top generating

control; station [16]

Wide-area Frequency instability, must Could require < 300 ms response time (by load

protection and respond faster than generator shedding) for high rates of frequency decay;

control governors to trip generators requires detection within 100 ms to allow

(WAPaC) instantaneously operator response in 150 to 300 ms [16]

Dynamic instability A few seconds

Poorly damped or un-damped Several seconds

oscillations

Voltage instability Up to a few minutes

Thermal overload Several minutes for severe overloads, rarely less

than a few seconds for minor occurrences [16]

SCADA Emergency event notification < 6 ms

Routine transactions < 540 ms [3]

Routine HMI status polling from Every 2 secs

substation field devices

2.7 SCADA System Components

SCADA it is not a product of a single vendor therefore configurations are not

all exactly the same. Traditionally, each vendor provides its own version of hardware,

software, or communication protocol. SCADA systems have been by nature propri-

etary systems. However, the components have essentially the same function in the

system.

Today’s SCADA systems are a combination of legacy and modern technology.

New technology and components are used along with older ones that have seen small
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modification to give room for the new components. The SCADA system can be

reduced to a few very major components:

1. Master or Central station which houses:

(a) Master Terminal Unit (MTU) also called server or host computer. This is

the system controller. The MTU is the center of operation. It monitors

the field autonomously, with the proper parameters; it can schedule update

requests or perform instructions, and monitor the remote stations based in

the current state of the system. The MTU has the capability to monitor

hundred of remote locations simultaneously. Depending on the size of the

SCADA system, an MTU can range from a single personal computer(PC)

to a large room containing dozens of computers and operators [15].

(b) Human Machine Interface (HMI), presents information graphically to the

operator. The operator can normally observe a schematic representation

of the plant being controlled [5].

(c) Operational databases, usually linked to the HMI to provide trending, diag-

nostic data, and management information such as scheduled maintenance

procedures, logistic information, detailed schematics for a particular sensor

or machine, and expert-system troubleshooting guides [5].

2. Substations or remote locations. It is here where most of the supervisory

control and data acquisition occurs, and it is done mostly automatically. How-

ever, functions are usually restricted to basic site overriding or supervisory level

intervention [5].which house:

(a) Substation Data Concentrator, as its name states; it puts together the RTU

and IED data from multiple field nodes into a single SCADA address for

each SCADA interface with the MTU [5]. The data concentrator polls

each IED and/or PLC for updates,then collates the data received from the

IED’s performs logic calculations, synchronization, data preprocessing so
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that this data is sent formatted appropriately for the master control station

to translate.

(b) Multiple field devices, such as:

• Power Equipment

• Programmable Logic Controllers PLC, PLCs scan their Input/Output

I/O by reading each I/O point [5]. They are difficult to configure and

cannot be used to control other devices or used as master controllers.

These are not the best choice when the host field station contains a

high number of points to monitor (I/O).

• Remote Terminal Units (RTU). The function of the RTU is to mon-

itor, interpret, execute, and respond to messages received from the

MTU [5]. The execution portion of its functionality may in fact be a

complex process from sending electrical signals, gather data or actually

changing states of equipment in the field. Because of the complexity

of its operation the RTUs are based on computer technology. RTU’s

perform the same function than PLCs or better because RTUs have

the intelligence to control processes. The RTU records data, commu-

nicate, perform process identification control, and other functions that

the PLC is completely incapable of performing by itself. RTUs are

capable of controlling process or even multiple process without other

devices intervening such as a controller or master RTU. These device

has the unique capability of using intelligent logic to execute some of

its functions.

• Intelligent Electronic Devices(IED). IED’s main function is to process

incoming analog signals, convert to a digital form, and resend infor-

mation via their communication link to a substation automation(SA)

controller (also known as a data concentrator) [5]. IEDs can issue

control commands to maintain a safe state when irregularities are de-

tected. IEDs are devices that allows one or more processors to receive
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and send data/control from/to an external device. Additionally, IEDs

can communicate among other IEDs and poll or respond to polls from

other IEDs. These are critical components because they provide the

integration and automation technology within a substation.

.

3. Communication Infrastructure to include modems, radio receiver/transmitters,

Local Area Network. (LAN), equipment sensors and actuators [5]. SCADA

traditionally depended on internal high speed transmission protocol completely

developed for that purpose because of SCADA unique near real-time response

required. SCADA transmission protocols are designed to be very compact, and

even though protocols are completely proprietary to SCADA vendors; they are

standardized among the community. This concept is evolving to move these

legacy protocols to operate over standard digital data transmission, such as

Ethernet, TCP.

2.7.1 SCADA Data Flow Summary. Data acquisition and monitoring func-

tions begin at the RTU or PLC (and now IEDs) level (Substation); it is at this level

that most of the activity. This includes meter readings and equipment status reports.

Reports are gathered, pre-processed and transmitted by the data concentrator at the

substation and then communicated (Communications infrastructure) to the master

control station.

The master control station is comprised of the supervisory servers and

software responsible for communication with the field devices in substations [5]. At

the MTU the data sent by the data concentrator from field stations is compiled

and preprocessed so that the HMI presents the data to the operator in the form of

display monitor, controls, and other devices. This way the operator can effectively

monitor and if needed, make the appropriate decisions required and interact with the

substation field devices. The HMI software runs on client workstations in the control

center, this may be a single PC depending on the size of the control station.
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2.7.2 A note on Intelligent Electronic Devices. Because of today’s advance-

ments in microprocessor technology, a single IED is capable of performing numerous

protection, control, and other functions that would require separate RTUs and PLC

devices. Therefore, this new piece of equipment is replacing both of these components,

which are phased out of the system and replaced by the IED. The IED has increased

system reliability dramatically and allowed new system management capabilities such

as predictive maintenance, improved planning, and life extensions [5]. Also, IEDs can

trip circuit breakers to maintain a steady state when anomalies are sensed. Further-

more, with the use of IEDs local assets are able to poll other local assets or answer

poll from other local assets to integrate each separate component in the station and

give each component a situational awareness of the stations as a whole. Moreover,

IEDs are smaller, require less hardwiring, have more intelligent logic embedded, etc.

which make it a better component.

2.8 SCADA applications

SCADA systems are used in a wide number of processes and plants. It ranges

from the essential tasks of supervising and controlling the generations of necessary

toxic substances, to even optimizing productions lines [15]. SCADA is a main com-

ponent of our CIs and ensures that those primary components of our economy are

running safely on a daily basis. Although this thesis is focused mainly in the SCADA

system used in the electric power industry, in essence the principle approached here

can be applied in a variety of applications, such as nuclear power generation, and

petroleum refining among others. We now briefly describe these two industries in

order to enhance the concept of SCADA system [3].

1. Nuclear Power Generation. This Power plant variation is very similar to a

conventional electric generation plant (i.e. thermo electrical, fossil fuel, etc),

because it generates power with the heat produced by high-pressure steam. As

the steam circulates through the system it causes a mechanical energy which

rotate generators [23]. The difference between these systems is the fuel used to
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elevate the water’s temperature to produce steam. Nuclear plants use materials

such as Uranium 235 to cause a nuclear fission reaction, in which its atoms

are broken down into smaller atoms. This reaction produces a violent reaction

and large amounts of energy by means of heat. Water is used to moderate

the energy/heat produced by this reaction. In doing this,water is is converted

into steam. This steam powers the turbines that generates the electricity. The

diagram in Fig. 2.11 shows in a very simple way the process explained above.

A critical characteristic of nuclear plants is that in, contrast to conventional

Figure 2.11: Diagram showing how electricity is produced in a Nuclear Plant [23]

sources of energy, a nuclear plant CANNOT be completely shut off. Radioactive

components are continuously producing a large amount of energy, and their

environmental conditions have to be strictly controlled at all times. Water has

to be flowing constantly to ensure that the heat produced is removed from the

system; otherwise accidents can happen with catastrophic consequences [15].
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The Chernobyl disaster is a prime example of why nuclear plants are consid-

ered critical infrastructure and how important strict control and supervision is.

On April 26th, 1986; the Chernobyl nuclear power plant located in the Soviet

Union exploded [12]. The bulk of the casualties were not a result of the explo-

sion but to the radioactive cloud that spread over the atmosphere and carried by

winds to remote regions distant from the area. The exact number of casualties

and injured is unknown.

(a) Chernobyl Reactor on Fire (b) Chernobyl Plant after accident

(c) Deformed child due to accident (d) Monument to Accident workers

Figure 2.12: Images of the Chernobyl Accident [12]
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2. Petroleum Refining. Oil is another element of our critical infrastructure. Our

nation’s economy depends greatly in the supply of this fuel to run almost every

aspect of our daily life. Petroleum refineries are extremely important. Ser-

vices and goods depend on the transportation by trucks, cars, trains, and other

vehicles that run on petroleum based fuels [15].

Refineries satisfy our demand for oil, by operating at high volumes in a

constant process. Refineries are designed to handle large capacities and run 24

hour, 7 days-per-week [15].

The main function of a refinery is to distill and perform other chemical

reactions on the crude oil; which require that the system operates at tempera-

tures of 500 to 1,000 degrees Fahrenheit and pressures ranging from 150 pounds

per inch to 3,500 [15]. During this process toxic substances in quantities that

exceed those tolerable in the finished product, such as ammonia and hydrogen

sulfide. These substances require constant monitoring to ensure their removal

and safe handling in the process because of their highly corrosive behavior.

We can see that because of the importance of their final products to our

economy, the delicate balance in the distilling process, and the dangerous sub-

stances produced in this process; petroleum refineries require constant and strict

control during all stages of the operation [15]. An attack in the SCADA system

protecting this process could result in fires, explosions, human fatalities, and

contamination of large areas. An example of the degree of damage that could

be caused by an accident is the explosion of two ships located at a port close

to Texas City near a refinery. The ships were transporting ammonium nitrate

when they exploded. The explosion caused the refinery to explode and destroy

most of the city and killing 576 people. Fig. 2.13 show a a portion of the

railroad tracks and the debris that accumulated all around area.
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Figure 2.13: Texas City, Texas after the refinery explosion of 1947 [22]

2.9 System Reliability Analysis

As any other system, SCADA has weaknesses, and sometimes these have caused

failures that have made evident the importance of the system it controls. The North

American Electric Reliability Council (NERC) reported that the system had a total

162 disturbances from 1979 to 1995 [29]. The study analyzed this report and came

up with 11 factors that caused these disturbances. Out of the eleven, the three

major causes of disturbances or failure are severe weather, unanticipated faults, and

equipment failures. The biggest contributors to these disturbances were the real-time

monitoring and operating control systems, communications and information systems,
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and delayed restoration. All these are highly dependent on a robust information

infrastructure and real-time analysis tools [26].

A study done in 2002, point out several bottlenecks in the communications and

information system that allowed the disturbances reported [29]. Among them are a

lack of automatic communication systems to receive rapid and automatic informa-

tion, inadequate transmission system security and communication facilities, a lack

of advanced communication and emergency communication equipment, and surpris-

ingly, a lack of real-time security analysis and coordinated operation under adverse

conditions. This study shows a great need to develop new tools and technologies that

enable us to improve the reliability of our utility infrastructure [26].

A strange fact is that SCADA lacks a redundant system to improve its reliabil-

ity. Geographically separated centers containing backups or duplications could hinder

the effects caused by natural disasters or human attacks [15].

2.10 The Threat to Utility Operations

Even though, the NERC reports shows sabotage as a minimum threat, the

nature of the industry where SCADA systems performs and along with introduction of

the SCADA infrastructure to open/corporate networks raises concern and introduces

new threats [16]. Although, there haven’t been many documented SCADA system

exploits; we can reasonably assume that infrastructure problems through SCADA can

occur based on the track record of intrusion to other physical systems.

Technology evolution integration comes at a high cost. The introduction of

standard components (hardware and software components) has also presented new

vulnerabilities to the system [5]. The same vulnerabilities as a standard corporation

network or even a personal computer. Even further, the introduction of the system to

the Internet makes it susceptible to intrusions and attacks from hackers from outside

as well as internal personnel.

As a consequence, SCADA systems, like any other systems, are becoming more

39



vulnerable to malicious code such as viruses, Trojan horses, and worms, unauthorized

disclosure of critical data, unauthorized modification and manipulation of critical

data, and Denial of Service attacks. These threats are critical, we have to remember

that SCADA components perform in Real Time or Near Real time, and that their

function requires a prompt response to system variations that could cause catastrophic

consequences under such attacks.

Additionally, we also have to remember that our country is in the middle of

a new type of conflict, asymmetric war; terrorism, where a small number of people

with large amount of resources can plan, without being detected, attacks to our

infrastructure using any means they see fit. This new threat is in addition to many

other threats ranging from conventional direct attack facilities, insider attack (coerced

employees), and again Cyber-attacks. The enormous control and supervision area of

responsibility of a single SCADA node and the type of facilities under their scope

puts them as main possible targets to our country’s new enemy, terrorism. Terrorists

know that causing system failures to our infrastructure could severely damage not

only a single CI but a large geographical region.

2.11 SCADA system security issues

In the report published by NERC in 2002, only 3 out of the 162 SCADA distur-

bances reported between 1975 and 195 were attributed to security (sabotage). How-

ever this could be a misleading result, we have to take into consideration that in the

past SCADA was an isolated entity; designed under complete proprietary hardware

and software. This type of design is what is named by some as a Closed Design [4].

As it is, SCADA is insecure by nature, because it was never designed with security

in mind, other performance factors were given higher priority maybe because the se-

cluded and specialized, equipment, protocols, facilities did not warrant the need to

provide a secure system as well [27]. However, the system is now evolving to con-

ventional components; these new trends bring along the vulnerabilities inherent to

components not produced for those critical functions.

40



Control systems are increasingly being incorporated with corporate networks

and the Internet. This poses two incompatibilities and security issues by itself. A

system as critical as SCADA was not design to be out in the ”open” and the Internet

does not offer the security required to operate this types of functions.

A study done in 2005 by a SCADA Security Assessment company points out the

following list of security issues [27]:

1. Insufficient Network Isolation, loosely defined access controls, SCADA Data

integration with IT Systems not secured [27].

2. Insecure remote access; with the new open network, users have access through

VPN channels directly of through vendor access, modem connections, or even

directly to SCADA end devices such an RTU [27].

3. SCADA flat IP Structure; this type of structure does not protect against mali-

cious codes and does not limit contractor or insider access [27].

4. Vulnerability Risk assessments miss crucial issues; most assessments done are

done by firms that ignore the specific requirement of CIs [27].

5. SCADA Security Education/Awareness; Information Technology (IT) profes-

sionals do not fully understand CIs and development of a new security certifi-

cation process directed toward CIs is needed [27].

There are several industrial and government-led (Department of Energy and Sandia

Labs) efforts to improve the security of SCADA and control systems in general. A

synergy of fields such as chemical, oil, gas, and water, power are concurrently devel-

oping programs focused on system security. The electric sector created the NERC

which is a standards creation and enforcement body that guides the industry and

ensures compliance with these standards [9].

2.12 Utility Industry Intranet

As technology advances are implemented in SCADA systems, new capabilities

are added to current SCADA systems. This technology evolution has dramatically

41



increased the amount of data produced. However, the requirement for real-time com-

munication is still required for the system to accomplish its mission successfully. This

particular environment for remote facility management and control lends itself as a

perfect candidate for Internet based or Internet like operations. Nonetheless, it is im-

portant to note that security and real-time operations are not what the Internet was

not designed for or is based on; and unfortunately building an Internet-like system

can be extremely expensive [10].

The utility industry has undergone deregulation and the number of utility com-

panies has multiplied as results. Communication between these new players in the

industry is important to ensure that operations remain safe. Cooperation between

market owners must be paramount to maintaining system stability and reliability [16].

A prime example of this deregulation in the utility industry is the Electric Gen-

eration Industry. Nowadays, power companies have been forced to split themselves

into different and independent entities with a specific function of generation, distri-

bution, or transmission. The transmission system is typically owned and controlled

by the ISO in each region of the power grid. As a consequence, we may find several

companies competing for the generation and distribution [10].

This new arrangement poses the problem that since transmission is centrally

controlled; only the power grid manager is able to upgrade the transmission infras-

tructure to meet increasing energy requirements. And this could be a problem, since

for some time the power grid has been operating close to its maximum capacity. Also,

with this many participants in the industry can make failure detection and isolation

in the grid really problematic.

A utility intranet could be designed using many of the standards that the world

wide web posses, but placing more emphasis in security. This is understandable be-

cause these standards are widespread, low cost, and will ease migration [28]. However,

there is already some work being done with this in mind, for example “The Utility

Communication Architecture 2.0 and the International Electrotechnical Commission
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(IEC) 61850 began lying the groundwork and establishing a specific utility intranet

for the industry and some of the power substations are already operating on it, on a

limited basis [10].

Finally, there is a new technology that is being widely used in SCADA systems

without much security scrutiny, wireless sensors networks. There is, however, work

done with the goal of standardizing the communication protocols to ensure confiden-

tiality and integrity mechanisms [16].

2.13 What is next in SCADA

The trend is for even more automation because it lowers costs and increases

speed and efficiency. Research and technology development is required to fill the

technology gaps between the problems of today and the industry solution of tomor-

row. The direction of SCADA is toward fully automated, distributed, and self-healing

infrastructures [16]. More intelligence and system level security is needed to elimi-

nate the issues associated with optimizing at a local level and man-in-the-middle

limitations.

Also, a point of interest nowadays is the introduction of OLE for Process Con-

trol, this is a mechanism for interconneting process control applications running on

Microsoft platforms. This new element in SCADA provides better security features

that the system lacks currently. It facilitates interoperabilty between a mix of hetero-

geneous devices in a control network, through a set of common interfaces. However,

this product is still under investigation and it is not ready for implementation yet; its

development is still underway [26].

2.14 SCADA Security Evolves

Recently, the community of utility companies has begun to shift from the pro-

prietary hardware, software, and protocols that once dominated the industry toward
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the adoption of open, networked communication standards for control and data acqui-

sition, patterned after the efficiencies and lower cost of technologies in the Internet.

There has been a constant debate in the industry between power engineers, who

have a desire to maintain finely honed processes and speed of operation requirements,

and the Information Technology (IT) personnel familiar with network security mech-

anisms who defend delay-tolerant office networks and see them as the most secure

measures for protecting systems against threats such as malicious code and online

exploits. Power Engineers raise concern that the majority of common IT security

mechanisms used in networks, like the Internet, will upset the current delicate bal-

ance in SCADA networks. Both parties are at odds with respect to the role, priority,

and implementation of security countermeasures. However, nowadays there are efforts

in the Utility Industry guided toward the enforcement of security mechanisms within

the Power Grid and inside SCADA networks.

2.15 The Trust System Concept

The concept of a trust system is to provide a non-proprietary system, or soft-

ware agents that plug into an existing network, somewhat transparently, to perform

the functions of correlating data and identifying risk levels for corresponding events

and status updates that point to negative impacts on utility services. The trust sys-

tem, at its core, is a software agent performing active security analysis and response.

In a network where nodes have sufficient unused hard drive capacity, memory, and

processing power, the agent would be loaded directly onto the node and provide an

active interface between incoming messages and the nodes code, data, and applica-

tions, similar to other software firewalls. It could also be set to monitor outgoing

messages [5].

This collaborative trust system is a hybrid solution comprised of the leading IT

security mechanisms and standard IP protocols while focusing on the distinct require-

ments of the SCADA community, such as the need to allow increased cooperation and
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information sharing in protection and control systems without disrupting the critical

operation of these systems [5].

2.15.1 How the Trust System works. The trust system intercepts status

messages or commands from network nodes destined for the master control station

or other nodes in the network. For companies with some legacy nodes, this would

require protocol gateway plug-ins for the trust system to interpret and analyze packets

delivered in different protocols and formats. The node in the network where one of

this devices is placed will be called a trust node [5].

The trust node perform functions of data validation, security risk identification,

alert initiation and response actions when bad data is identified. Additionally, it

assigns data types to each of the good data elements in each message and determines

if the recipient is authorized to read all of the data types in the message. If needed,

it sanitizes the parts of the message that are not allowed to be passed to the recipient

before forwarding it or simply deletes the message altogether. Finally, the data is

then viewable and accessible only to those with the appropriate credentials, need to

know, and rights to access those data elements [5].

2.15.2 Inter-Company and Inter-Area Protection. Even though the trust

system is not utilized in the present SCADA architectures, this new concept preserves

the fine time constraints native to SCADA, but also increases the security protection

of the system, which is also very important [5].

The trust system can be placed at strategic locations such as connections be-

tween adjacent utility companies, outgoing connections from utility companies to

master control stations and engineering centers, and between reliability coordinators

would provide low-cost networks security to any of the different types of SCADA con-

figurations. This is important because situational updates shared between adjacent

utility companies with different SCADA systems will facilitate automatic recognition

of changing conditions that might affect their operations such as load changes versus
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current power generation levels. This earlier warning will expedite decisions and re-

sponse actions such as load shedding or adjust generation rates to absorb or make up

for the rapid changed in power flows from adjacent companies [5].

This new capability enables neighboring utility companies to update their op-

erational picture and provides them with a wider perspective of power capabilities

and emergency situations. Likewise, control areas can increase their perspective and

provide area-wide status and emergency notifications to Regional Utility Operations

Center, which in turn improve their regional situational awareness [5].

2.15.3 Internal Traffic Protection. When utilized inside a utility company’s

network, the trust node provides firewall protections between SCADA nodes and

any connected office environment. Moreover, it can ensure fast, reliable delivery of

important real-time and emergency traffic.

2.16 Related Work

The use of mathematical modeling or linear programming to solve power grid

protection problems is novel. However, there exists several examples of analogous

approaches applied to similar situation but unrelated fields.

2.16.1 Combining Quality of Service and Topology Control. This research

utilizes linear programming to develop a model that simulates the hybrid wireless

network environment [8]. This model accounts for network characteristics such as

latency, power consumption, probability of the transmission being intercepted, and

priority of the link user. The environment has variables, such as the number of users,

the type of links that a user can establish, and user priorities. The problem is defined

as finding the optimal network topology, by determining the links that should and

should not be establish, given the networks characteristics defined above.

2.16.2 Dialable Cryptography for Wireless Networks. This research objec-

tive was to develop an adaptive cryptographic protocol [7]. This protocol takes into
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account the hardware and bandwidth available to select the optimal cryptographic

strength and algorithm. This idea of dynamically changing the security of a system

is important in wireless ad hoc and sensor networks where critical resources such as

battery life, memory, computational power and bandwidth are not constant. This

research used integer programming to find the best encryption algorithm to use.

2.16.3 Network Design Problem Formulation. The problem approached is

to find the design that minimizes the total systems cost defined as the sum of the

design cost and the routing cost [24]. Design cost occurs when an edge is added

to the network. We assume that we have a flexibility of designing a networks and

determining its optimal flow or routing.

The modeling assumption considered in this book, is the “uncapacitated network

design problem”. Where multiple commodities need to be routed on the network.

Each commodity has a source and a destination. The problem is formulated as an

optimization problem, where the objective function consists on minimizing the cost

2.17 Chapter Summary

SCADA systems are extremely important for our nation and the world. Critical

infrastructures such as the power grid depend greatly on the efficient performance

of these type of systems to protect their integrity. WAPaC systems such as SCADA

are used in almost every kind of industry but most importantly. According to the

Newton-Evans Research Company, 75% of the world’s gas and oil pipelines of 25 km

or more in length are monitored and controlled by SCADA systems. Application is

not limited to CI sector processes.

SCADA moves toward automation because it increases effectiveness and reduces

cost. However, Internet’s technology was developed ignoring security risks and vul-

nerabilities for the most part. Unfortunately, from a security perspective, SCADA is

as vulnerable as a telephone line can be.
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The new trend of utilizing COTS products increases the risk because most of

these products were designed for small scale use or for applications not as critical,

again in fields where security may not be as crucial as it is in the management and

control of our vital infrastructure.

SCADA systems are so important that they impact level I infrastructures – wa-

ter, power, energy, and telecommunications. However, SCADA is also is also employed

in other critical infrastructures such as transportation, food, and agriculture.

Scenarios such as massive power blackouts, oil refinery explosions, or waste

mixed with drinking water due to SCADA system compromise, failure, or degradation

have the potential to inflict significant damage to human life and critical infrastruc-

ture at local, regional, or national levels. If synchronized with a physical attack or the

aftermath of a natural disaster, cyber attacks on SCADA systems could greatly esca-

late fatalities in a region already rendered unable to coordinate a timely response or

ill-prepared to offer necessary shelter, clean water, and contamination control, perfect

methods for inciting terror once again in America [5].

There have been incidents that have not been widely publicized that reflect the

interest of terrorists to attack our industry. For examples, In 2001, the U.S. military

discovered evidence in Afghanistan that al-Qaida terrorists were researching SCADA

systems [21]. All this information proves that there is an impending need to protect

these systems by developing new concepts that improve and enforce security tasks

but parallel to this ensure the compliance of environment strict time constraints. The

trust system is a viable device adds important security functions. Also, when located

at strategic locations trust nodes can stop cascading effects from spreading to larger

regions and diminish their consequences.
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III. Methodology

This chapter has two goals, the first one is to provide a description of the tools

used during the research. The second goal is to describe the methodology

adopted to obtain accurate and meaningful results that closely approximate real world

conditions and operations. In doing so, this chapter explains the model and scenarios

utilized to simulate communications that would be present in the implementation of

a collaborative control network (trust system). Ultimately, this research proposes

power grid/SCADA network configurations which increase the level of security by

adding the trust node security mechanism to the network, by compartmentalizing

the network into subnetworks (or domains) protected by these trust nodes placed at

strategic locations.

This chapter first describes in broad terms what the problem is, and makes an

attempt at emphasizing its importance to our country. Then, it will graphically show

what is the research objective by showing how the input network looks like and how

it would look, after the input is processed in the optimizer.

3.1 What is the problem?

The United States faces a new type of conflict, terrorism. Terrorists intend to

achieve their ideological goals by creating fear or terror by deliberately targeting non-

combatants, or any structure that weakens our country. These procedures or “tactics”

violate international treaties, and therefore are considered to be unlawful violence and

acts of war. The use of unconventional methods presents a new type of threat to our

country, to which we may not fully ready. A threat the could potentially attack our

country within our borders. The enemy can launch low visibility attacks without the

need for a large logistical footprint by utilizing day-to-day equipment and material

to perpetrate attacks with catastrophic repercussions. These type of aggressions are

mainly directed towards innocent civilian population and critical infrastructures.

The protection of our electric power grid is of paramount importance. One way

to do this is to develop the technology and/or methodology necessary to strengthen
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and protect our infrastructure against these types of attacks. When equipment mal-

functions, unauthorized activity is detected, the security infrastructure should isolate

the anomaly from the rest of the network to stop it from spreading to larger sections

of the network. As a consequence, when a local failure occurs, it does not turn into an

incident of major proportions, in the case of the power grid, into a regional blackouts.

3.2 Problem description and Research Objective

The problem described above is broadly introduced here; details are covered in

subsequent sections of this chapter. The problem is to convert a power grid or SCADA

network topology such as the one shown in Fig. 3.1. This figure shows the input con-

figuration to the model being tested. This network has minimal security protection.

It consists of a typical network topology containing the connections between buses or

substations.

Figure 3.1: Current network topology used as input for this research

The topology shown above is processed and our result will be a configuration

showing the characteristics shown in Fig. 3.2. Here, the buses are grouped into
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domain and the branches communicating domains are protected by trust nodes (see

section 2.15).

Figure 3.2: Network topology produced showing domains and trust node placement

The goal of this research is to show in a simulated environment that security

of the network can be strengthen by first fielding the trust system described above

and second, by dividing a network into smaller clusters, called “domains,” in order to

isolate anomalies or intrusions detected. In order to show this, a mathematical model

of the problem will be built and translated into a software tool that at the end will

receive real-life-network data as input.

This program uses real world power grid representative data, outputs a network

configuration that has used the concepts described above of network compartmental-

ization and strategic placing of trust nodes. For purposes of this research, a node is

considered a “strategic location” if its positioning within the domain allows the trust

node to monitor all traffic (herein called messages) between domains. A solution is

feasible if it satisfies the above but also if timing constraint are not violated for any

traffic input.
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3.3 IEEE Test Case Data

The data that was used for the research was obtained from the University of

Washington (UW). The UW Power System Case Archive is a repository of data sets

that in some cases represent actual Power Systems such as the New England Power

System which is represented in the 30 Bus Dynamic Test Case [31]. The data is stored

in the standard “IEEE Common Data” format. Each data set has several sections

representing information from different devices in the power grid. For example, branch

data, bus data, or loss zones data. For the purpose of this research, we will only use the

bus and branch Data. Buses represent nodes in the network or substation locations,

and branches are the connection between buses. There are two different types of data

available:

1. Power Flow Systems Test Case Archive. This data set is also called static, and

it describes the state of the system at a specific point in time. There are five

data sets available with in this test case:

(a) 14 Bus (nodes). This IEEE Bus Test Case represents a portion of the

American Electric Power System in the Midwestern, US. as of February

1962 [31]. Figure 3.3 shows the diagram represented by the test case text

file.

Figure 3.3: Diagram of network represented by the 14 bus test case [31]
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(b) 30 Bus. Fig.3.4 presents the network represented by this IEEE Bus Test

Case data which represents a portion of th American Electric Power System

in the Midwestern,US, as of December, 1961 [31].

Figure 3.4: Diagram of network represented by the 30 bus test case [31]

(c) 57 Bus. Fig.3.5 shows the IEEE Bus Test Case which represents a portion

of the American Electric Power System in the Midwestern,US, as it was in

the early 1960’s [31].

Figure 3.5: Diagram representing the 57 bus test case [31]
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(d) 118 Bus. This IEEE Bust Test Case represents a portion of the Ameri-

can Electric Power System in the Midwestern, US, as of December, 1962.

Fig.3.6 shows the diagram represented by the test case text file [31].

Figure 3.6: Diagram Representing the 118 Bus Test Case [31]
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(e) 300 Bus. This data set was developed by the IEEE Test Systems Task

Force [31]. However, it is not clear if the data represents an actual power

system. Fig. 3.7 presents the topology represented in the test case data.

Figure 3.7: Diagram representing the 300 bus test case [31]
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2. Dynamic Test Cases. The data set represents the behavior of the system through

a period of time. It reflects reactions to voltage variations or other changes that

affect the grid and how components reacted to them. This data set was archived

from several sources, no diagrams are available for either of these cases:

(a) 17 Generator, 162 Bus power flow dynamic stability test case, which in-

cludes a 162 bus power flow data file. Initially distributed by Iowa State

University [31].

(b) 30 Bus “New England” Dynamic Test Case. This data set was obtained

from Arizona State University. And it is representative of New England

Physical Power System [31].

(c) 50 Generator 145 Bus Dynamic Stability Test Case initially distributed by

Iowa State University [31].

3.4 Approach

Since our goal is to maximize the number of domains created. Also, the number

of trust nodes that can be placed without violating the strict response times(i.e. time

thresholds) that the network is bounded by to ensure safe operations. This prob-

lem statement fits the description of an optimization problem. In mathematics and

computer science, an optimization problem is the problem of finding the best solu-

tion (maximum, minimum) within a set of feasible solutions while enforcing system

constraints.

Before we begin building a model, we need to make sure that we have all the

information/data needed to perform our research. And to do this, preprocessing of

the raw test data was needed to make sure it was in the format required to be used

as the model input.

3.4.1 Data Preprocessing. The raw data sets do not contain all the infor-

mation needed to replicate the network with nodes and edges. The data sets contain
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what nodes are connected, however, they do not contain the distance between nodes

or the delay between nodes. Therefore, additional research needed to be done to

derive the distances between nodes (or buses).

In order to derive the distance and/or delay between nodes (stations) a small

program was written. The process used in this program to derive distance is described

below:

1. From the IEEE raw data, branch section, extract “Branch Resistance R, per

unit” is stored in column seven of the data. Resistance is measured in ohms, Ω.

2. ρ is the static resistivity ( Ω¦ m). Resistivity is defined below. This value is a

constant dependent on the material being used. It is assumed aluminum with

iron core a value of 2.50188x10−8Ωm. Equation 3.1 shows this formula.

3. Area is the cross-sectional area of the material (square meters, m2). Research

show that the Area is 1.25 inch2 which converted to meters is constant value of

.00080642m2 was the value used for our calculations [11].

4. l ( or distance) is the length of the piece of material ( meters, m). This is

the information that we are interested on. We obtain distance by using the

resistivity formula and solving for l. Equation 3.2 shows the formula used to

obtain distance.

5. Multiply this value by 3. The reason for this is that the cable used in the

transmission of electricity is composed of three wire [11].

6. Use the absolute value of the number on previous step (distance in meters (m))

to convert to time (delay) in seconds using the formula for velocity, and solve

for time. For purposes of this research, we assume that fiber optic is used in

the communication line, therefore we used the speed of light (299, 792.458 m
msec

).

Equation 3.3 shows the formula used to obtain time.

Resistivity (ρ) Also known as specific electrical resistance is a measure of how

strongly a material opposes the flow of electric current. The electrical resistance of a
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wire would be expected to be greater for a longer wire, less for a wire of larger cross

sectional area, and would be expected to depend upon the material out of which the

wire is made. A low resistivity indicates a material that readily allows the movement of

electrical charge. The standard unit of electrical resistivity is the ohm*meter (Ω*m).

The formula for electrical resistivity is:

ρ = R ∗ Area

l
(3.1)

Solve for l and we get:

l = R ∗ Area

ρ
(3.2)

Time =
Distance

Speed
(3.3)

In order to better illustrate this, I will describe how a delay was derived.

1. From the raw data set, the program reads column seven from the branch data

set portion (i.e. resistance). For this example we will use the actual value

R = .01938 Ω.

2. From our assumptions, we use the resistivity value for aluminum which is

2.50188x10−8Ωm and the cross sectional area of the conducting medium, 0.00080642m2.

and apply equation 3.2 as follows:

l = .01938Ω ∗ 0.00080642m2

2.50188x10−8Ωm
= 624.69 m (3.4)
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3. Multiply by 3 yields 1, 874.07m

4. Apply equation 3.3 assuming the speed of light as follows:

Time =
1, 874.07m

299, 792, 458 m
sec

= 6.25124 x10−6sec (3.5)

5. Convert to milliseconds to get:

6.25124 x10−3msec

6. Last, we round off to use the integer part of this number (i.e. 6). This number

will the used as propagation delay in the model input.

This process was completely automated using the program described above.

This program produces the list of nodes and branches connecting them with their

corresponding delays. After this it prompts the user to enter desired source node

and a destination node, calculate the shortest path and appends it to the network

file. With this, we are now capable of taking any IEEE data format test case, derive

distances/delays between buses and output the networks input file necessary for our

research.

3.4.2 Mathematical Programming or Optimization. In mathematics, the

simplest case of optimization, or mathematical programming, refers to the study of

problems in which one seeks to minimize or maximize a real linear function by sys-

tematically choosing the values of real or integer variables from within an allowed set

or linear constraints [8]. Optimization is a small subset of this field which comprises

a large area of applied mathematics and generalizes to the study of means to obtain

”best available” values of some objective function given a defined domain where the

elaboration is on the types of functions and the conditions and nature of the objects

in the problem domain.
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In summary; in optimizing a problem the goal is to seek a minimum or maxi-

mum value for the objective function by systematically choosing the values of real or

integer variables within an allowed set. And this allowed set is defined mainly by the

constraints given, which can be set to not to exceed a certain amount or not to go

below a set amount of time, money, speed, resources, etc, depending on the nature of

the problem.

Mathematical programming has been divided into different subfields depending

on the type of degree its objective functions and constraint may have, and the values

that the decision variables in the program can take. Some of these subfields are:

• LP - Linear problems have components (i.e. objective function, constraints, and

unknown variables) defined as linear functions.

• MILP - Mixed integer linear problem; An optimization problem which involves

both integers and continuous variables [36].

• QP - Quadratic problems; It is the problem of optimizing a quadratic objective

function of several variables subject to linear constraints on these variables [36].

• MIQP - Mixed integer quadratic problems [36].

• QCQP - Quadratically constrained quadratic problems [36]

• CNLP - Convex non-linear problems [36]

In essence, optimization problems regardless of its subfield are made up of three

main components:

1. Objective Function, this is the mathematical function that we need to op-

timize (maximize or minimize), such that we find the “best solution”. For

example, we may want to maximize profit or minimize cost of operations.

2. Set of Variables, which affect the value of the objective function. In a trans-

portation problem the variables can be cost of fuel, distance traveled, number

of vehicles available, etc.
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3. Set of Constraints, which establish boundaries or limits to those variables.

For example, monthly budget for fuel expenses. The purpose of these is to define

the set of feasible solutions or solutions that fit within the boundaries of the

constraints.

3.4.3 Linear Programming. Historically, the first optimization technique is

known as steepest descent or gradient descent which is used to find a local minimum

of a function, and goes back to the German mathematician and scientist Johann Carl

Friedrich Gauss who contributed greatly to the field of mathematics and several other

fields of science [36]. Linear Programming (LP) is a technique for optimization of a

linear objective function. This function is bounded by linear equalities and

inequalities called constraints.

LP was developed by George Dantzig in the 1940’s [36], the term is not in any

manner linked to computer programming ; it was labeled as such because of an ac-

quisition “program” by the Unites States military which refers to proposed training

and logistic schedules. It was this term that help the project receive federal gov-

ernment funding, since it was immediately associated with high-technology research

areas which were considered to be of extreme importance.

When solving problems utilizing this technique a model is created by extracting

the characteristics of the problem under the problem domain. Some of the character-

istics can be speed, traffic load, number of nodes, distance between nodes, network

delay, etc. The technique evaluates the requirements against constraints utilizing lin-

ear equations. The goal is to accurately design an objective function that is optimized

subject to the constraints natural to the problem being optimized (i.e. response times,

propagation delays, etc). The end result should be a set of mathematical expressions

collectively called a mathematical model that represents the real world problem being

solved.
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3.4.4 Mathematical Model. The following is a description of this research.

First, is the problem domain narrative. Most of the information in this section has

been discussed in Chapter 2, however the problem domain narrative has not been

edited to present the model in its entirety.

3.4.4.1 Problem Description. The problem consists of an input

network that represents a Power Grid or a SCADA facility; the facilities connection

and their connection delays. Different types of background traffic are transmitted

through the network with corresponding different response times (or thresholds) de-

pending on the criticality of the message traffic. The nodes can represent terminals in

the Power Grid or SCADA network components connected by edges, which represent

the distance and/or delay between the network components. For our purposes if the

network has an edge, (j, k); then a transmission between nodes j and k is possible in

both directions. The branches (or edges) between the nodes represent delays that are

calculated outside the model. It is important that the delay is always less than the

response time expressed as a threshold.

In order to increase the security of the network (i.e. grid, or SCADA facility)

the layout needs to be subdivided into Domains. This compartmentalization isolates

attacks or malfunctions so that they can be dealt within the domain affected. This

prevents a rapid cascade effect through out the grid/facility.

Additionally, a new security mechanism, called “trust node” (tN) is “installed”

at strategic buses. This device inherently adds delay to the network due to its func-

tioning. The number of trust nodes is limited. As clarification; even though it is

called a trust node, it IS NOT a node or bus, it is a device that is installed at the

bus to add security to the communications flowing through that bus in the network.

tN’s represent pieces of hardware/software that is added to that node, to increase

security functions. Section 2.15 has a more detailed description of the trust node or

trust system.
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The goal is to be able to partition the network in as many domains as possible

(maximize), and install as many trust nodes as possible without causing any type of

traffic to exceed its corresponding response time. The response time is critical for a

safe operation of the facility.

The input is a text file that provides the components of a graph such as a set of

branches (or edges), a set of buses (nodes), a set of delays in those branches, traffic

represented by its path and its type. Also, the input provides constants that are used

in the optimization process.

Algorithm domain description:

Consider a Network represented by a graph G, and nodes

• Let Graph: G(Bus, Branch) Where:

– Let Bus denote the set of Buses (i.e. Vertices).

– Let Branch denote set of Branches (i.e. Edges). This variable is defined

as an array of integers with a capacity determined by bus.

The specific variables utilized in the model are the following:

• Input Variables:

– Let nBus be the integer number of buses in the network.

– Let nBranch denote the integer number of branches the network has in it.

– Let nPath denote the integer number of paths in the network.

– Let nTrafficType denote the different type of traffic types in a SCADA

system

– Let responseTimes denote the response times the need to be enforced for

each type of traffic in a SCADA system. These are obtained from previous.

– Let tDelay denote the delay added to the network when a trust node is

added to a bus.
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• The indexing sets are:

– Let bus denote the indexing set for buses. This is initialized as an un-

bounded range.

– Let busRange denote the indexing set for buses.

– Let maxDomainNum denote the maximum number of domains that can

be created.

– Let DomainRange denote the indexing set for the number of domains.

– Let minNode InDom denote the minimum number of buses (or nodes) that

are needed to be assigned to a domain.

– Let max TNode denote the maximum number of trust nodes available.

– Let tNodeRange denote the indexing set for the set of trust nodes.

– Let pathRange denote the indexing set for the set of paths.

• Let delay indexed by the set of buses represent the delay in the branch connect-

ing those buses.

• Let busInDomain denote the domain number where each bus has been assigned

to.

• Let domBranch denote the incidence matrix for each domain created, reflecting

only the buses and branches included in that specific domain. This is represented

with a three dimensional variable; where the third dimension corresponds to the

domain number. The first and second dimensions represent the buses in that

domain. This matrix is assumed to be bidirectional.

• Let domainNodeCnt denote the count of the number of buses/nodes contained

in a domain. This variable is initiated as follows:

∀k ∈ domainRange : domainNodeCntk =
∑

j∈busRange

busInDomainj,k

• Let totDomain denotes the count of all domains created.
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• Let unusedBranchs denote the branches that are not inside or part of a domain.

These could be used to calculate domain entry/exit points or buses where a

trust node may be placed.

• Let tNodeLocation denote the node number where a trust nodes device has been

installed.

• Let tNodeLocationTot denote the sum of trust nodes used.

• Let tNodeCnt denote a count of trust nodes being placed or utilized.

• Let trustDelayArray denote the added delay to each path by the total sum of

trust nodes in that path. It is initialized by multiplying the delay incurred by

adding a trust node and the tNodeLocationTot, such as:

∀p ∈ pathRange, ∀j ∈ busRange :

trustDelayArrayj,p = tNodeLocationTotj ∗ tDelay

• Let trustDelayResult denote the sum of the delays incurred when accounting for

the trust nodes installed along the path of the traffic. This variable is Initialized

as:

∀p ∈ pathRange : trustDelayResultp =
∑

k∈busRange

trafficTrustk,p ∗ tDelay

• Let traffic denote a matrix containing the traffic path incidence matrix, or in

other words, contains the edges included in a path.

• Let trafficType denote a numeric array whose values determine the traffic type

for the path in the same index position in the variable traffic. This number is

looked up in the responseTimes variable to evaluate the appropriate threshold.

For Example, if trafficType contains a 3 in location 1, then the path in location

1 of the variable traffic is of type 3. And it will use the threshold stored in the

variable responseTimes(3).

• Let trafficIncidenceArray denotes the nodes included in the path being evalu-

ated, the values in the array are 0 or 1 (Boolean Matrix).
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∀p ∈ pathRange : trafficIncidenceArrayj,p =
∑

b∈busRange

trafficb,j,p

• Let trafficDelayIncidence denote the incidence matrix of the traffic delay inci-

dence after path input. This variable stores the delays incurred during a path.

It is initialized by multiplying the delay between two nodes j and k times the

positions in the array traffic where a 1 has been stored. This initialization is

accomplished by:

∀j, k ∈ busRange, ∀p ∈ pathRange :

trafficDelayIncidencej,k,p = trafficj,k,p ∗ delayj,k

• Let trafficDelayIncidenceArray denote the sum of each of the delays per path.

It is initialized utilizing the delays on each node as follows:

∀p ∈ pathRange, ∀j ∈ busRange :

trafficDelayIncidenceArrayj,p =
∑

k∈busRange

trafficDelayIncidencek,j,p

• Let trafficTrust denote the delay added to the path when it traverses a node

that has a trust node in it.

• Let trafficDelayResult denote the total delay per path. This is calculated by

adding the sum of the delays on the branches included in a path or traffic. This

is initialized as follows:

∀p ∈ pathRange :
∑

k∈busRange

trafficDelayIncidenceArrayk,p

• Let trafficResult denote the delay on a path. This is calculated by adding the

delay incurred by the traffic alone and the delay incurred when a trust node was

added to the path. Since this delay stores the total delay, it is constrained to

be less than threshold. It is an array and each element represents each path’s

total delay.

∀p ∈ pathRange : trafficResultp = trustDelayResultp+trafficDelayResultp
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The following assumptions are made:

• Delay is bidirectional:

delayi,j = delayj,i

• Branches are bidirectional:

∀m,n ∈ bus : n ≤ m ⇒ branchm,n = branchn,m

• The incidence matrix for each domain:

∀d ∈ domainRange; n,m ∈ busRange : domBranchm,n,d = domBranchn,m,d

Subject to the following constraints(CT):

• – The Total delay (trafficResult) on every message (traffic) has to be less

than or equal to the response time allowed by the system (threshold). The

response time is different depending on the type of traffic. (CT 1)

– The number of nodes per domain can either be 0 (if not being used) or

greater than or equal to minNodesPDom(i.e. semi-continuous ). (CT 2)

– Every bus has to be assigned to exactly ONE Domain(Sub-Network) (CT

3)

– Every node has to be assigned to a domain.

– The number of unused branches has to be greater than the difference from

the total branches in network and the sum of the branches that have been

assigned to a domain.(CT 4)

– The number of buses assigned to domains has to be less than or equal to

the total number of buses. (CT 5)

– Every trust node may only be assigned to one bus in the network.(CT 6)

– The sum of the buses in each domain is less than the total number of buses

in the network

– The sum of all buses on each domain is equal to the total number of buses

in the input Network (Bus).(CT 10)
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– Every node in the network can have a maximum of ONE trust node as-

signed to it. (8)

– Every bus can only contain at most ONE trust node. (CT 9.iv)

– busInDomain, domBranch, tNodeLocation, tNodeCnt, totDomain, unused-

Branchs are binary variables. (CT 9)

Objective Function: Maximize the number of total domains created.

3.4.4.2 Mathematical Model:

Objective Function:

Maximize

domainSize∑

d=1

totDomaind

Subject to:

1. ∀p ∈ pathRange : trafficResultp ≤ threshold

2. ∀k ∈ domainRange : (domainNodeCntk > minNode InDom) ∨
(domainNodeCntk = 0)

3. ∀j ∈ busRange :
∑

k∈domainRange

busInDomainj,k = 1

4. ∀j, k ∈ busRange : unusedBranchsj,k ≥ branchj,k −
∑

d∈domainRange

domBranchj,k,d

5. ∀k ∈ domainRange :
∑

j∈busRange

busInDomainj,k ≤ nBus

6. ∀j ∈ tNodeRange : tNodeCntj ≤ 1

7. ∀b ∈ busRange :
∑

t∈tNodeRange

tNodeLocationt,b ∗ nBus

2
≥

∑

k∈busRange

unusedBranchsk,b

8. ∀b ∈ busRange :
∑

t∈tNodeRange

tNodeLocationt,b ≤ 1

9. Binary Variables:

i. ∀j, k ∈ busRange : unusedBranchsj,k ∈ {0, 1}
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ii. ∀j ∈ tNodeRange : tnodeCntj =
∑

k∈busRange

tNodeLocationj,k ∧

tNodeCntj ∈ {0, 1}
iii. ∀j ∈ busRange, ∀k ∈ domainRange : busInDomainj,k ∈ {0, 1}
iv. ∀j ∈ tNodeRange, ∀k ∈ busRange : tNodeLocationj,k ∈ {0, 1}
v. ∀j, l ∈ busRange, ∀k ∈ domainRange : domBranchj,l,k ∈ {0, 1}
vi. ∀d ∈ domainRange : totDomaind ∈ {0, 1}

10.

busRange∑
j=1

domainRange∑

k=1

busInDomainj,k = Bus

3.4.5 Application used for model development. The next step in the process

was to determine what type software was needed to perform optimization and

translate the mathematical model defined above into a language. To accomplish

this, the optimizer Xpress-MP environment was used. This environment

implements a language called Mosel [1].

Mosel is a language that is both a modeling and a programming language. This

allows the environment to combine the modeling and the programing of the

algorithm. Mosel language code is then processed using what is called an optimizer,

in this case Xpress-Optimizer which is what takes the language and solves the

problem represented in it [1].

Mosel allows the user to define models in a form that is close to algebraic

notation and to solve them in the same environment. The optimizer utilizes several

algorithms to solve problems:

1. Simplex methods: In an LP problem, the region defined by a set of linear

constraints is known as the feasible region. The simplex method is based on

the fact that the optimal solution lies on the boundary of the feasible region.

Usually, simplex methods consider solutions at the vertices on the boundary of

the feasible region and proceed from one vertex to another until an optimal [8].

solution has been found, or the problem proves to be unfeasible or unbounded.
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(a) Dual simplex methods. The dual simplex algorithm is usually much

faster than the primal simplex algorithm if the model is not infeasible or

near infeasibility [8].

(b) Primal simplex method, however, is usually the best choice for problems

that are likely infeasible as it makes determining the cause of the

infeasibility less difficult [8].

The difference between the primal and dual simples methods lies in which

vertices they consider and how they iterate.

2. Newton Barrier method. This is an interior method because it iterates moving

from one point to the next within the interior of the feasible region.

Approaching the boundary of the region is penalized, therefore the process

cannot leave the feasible region [8]. Interior point methods usually give a

solution lying strictly within the interior of the feasible region, this solution

can only be an approximation to the true optimal vertex solution. As a

consequence, how close we want to be to the optimal solution and not the

number of decision variables, influences the number of iterations required to

reach that optimal approximation. This method usually completes in a similar

number of iteration as the simplex method, regardless of the problem size.

3.4.6 Input of Model in Optimizer and Validation. As the model was being

entered, the approach was to subdivide the problem into different phases and build

on the previous phase to implement the new phase. Each one of the phases

represent each one of the goals that were needed to accomplish the optimization.

The phases that the model was divided onto are the following:

i Subdivision of input network into domains. Nodes inside a domain have to be

contiguous.

ii Placement of trust nodes in strategic nodes. We want the model to place the

maximum number of trust nodes in the network. However, trust nodes have to
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be located in nodes where they can monitor incoming and outgoing messages

between domains. Moreover, the model has to ensure that by placing these

trust nodes the response time threshold is not violated.

iii Multiple traffic processing and response time compliance. The model should be

able to process multiple messages with different response time thresholds and

ensure neither of the thresholds is exceeded. For purposes of this research, it is

assumed none of the paths in the networks violate the established operating

time constraints. The reason for this assumption is that the IEEE test input

network represent an actual version of a portion of the power grid. Therefore,

it makes sense that this assumption will hold; otherwise the power grid

network would mis-operate under normal conditions.

Once each phase was entered into XPress-MP, the next step was to validate that

portion of the model entered. In order to do this, the model was run against small

networks; starting from three, four, five, seven nodes and a relatively small number

of branches as well. These smaller networks were solved manually to make sure that

the model was satisfying all the constraints entered in it. When XPress-MP

produced different answers, they verified to make sure that there was not another

feasible answer that was looked over and that the model had found which was

correct as well.

3.5 Response Times or Thresholds

The response times utilized in this research were obtained from Fig. 2.3 and are

shown in Table 3.1. This values were entered as input to the model in a separate file

containing an array holding these values. Additionally, a second file containing the

values in the second row represent experimental values used to test the model

against lower time constraints. The resulting configurations were compared between

both response time files.
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Table 3.1: Time Constraint in milliseconds
Time in milliseconds

Time 1 2 4 40 180 300 10000 10000 36000 10000 6 540 2000
Time 2 .2 .7 .25 180 30 10 10 36 100 2 540 1000

3.6 Summary

This chapter discussed the approach taken to solve the problem and the steps

followed to execute this research. We started from getting the raw data files and

performing calculations on it, to derive information that was needed. It also covered

the basis for the optimization technique used on that data and the optimizer

software utilized on the data. Next, it described shortly how the mathematical

model was built and entered into the program. And finally, it described the process

used to make sure that the model was providing correct results before it was used in

larger scenarios.
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IV. Analysis and Results

This chapter provides details of the results of the optimization trials of our

trust node placement algorithm on different network configurations based on

standard IEEE test cases. It presents calculations of the best configurations that the

Mosel optimizer produced. These resulting configurations are representative of

actual systems that the trust system could help to secure in the electric grid.

Moreover, this type of optimization model could be utilized to configure any

network that has the same characteristics, constraints, and assumptions.

There are a large number of results that are not shown in this document for

purposes of brevity; more specifically, the smaller scenarios are excluded. The first

set of runs shown here will have the results obtained from running the network in

Linux and Windows. Finally, it was not possible to show the larger (i.e., 57 bus)

scenarios because their running times were too large given the computing resources

available.

4.1 XPress-MP Platforms

The research facility had two different licenses for the XPress-MP optimization

software, a Windows version and a Linux version. As a comparison, a section of this

chapter will focus on version result differences. The same exact scenario will be

compared between Windows and Linux test runs.

4.2 Results analyzed, and questions answered

During this chapter, the analysis will show that it is possible to utilize the trust

system suggested in Chapter 2, to enhance system security, despite the trust system

delays introduced, when careful optimization constraints are enforced. The results

analyzed present suggested configurations that use careful network

compartmentalization, which in addition to the security protection in the trust

system, also helps to isolate attacks and other malfunctions that cause system
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instabilities. Additionally, an evaluation of running times is provided between

scenarios.

For purposes of this research, a successful output configuration represents a

correct domain grouping in the network which implies that the nodes are connected

to each other and that a domain does not contain less nodes than the minimum

entered for that run. Also, that the trust systems have been placed at nodes or

buses where the security of the domains that they were placed in is increased.

Finally, there should be not more than the maximum number of allowed trust nodes

placed for the run.

4.3 Input File

As described in Chapter 3, the Mosel model received a text file as input. This

file describes the characteristics of a “real life” network, which was assumed to

parallel the same nodes and edges as in the raw IEEE test case. This file is the

product of the data pre-processing program described in Section 3.4.1, which takes

the raw data and to arrive at a corresponding communication network.

The file naming convention used for input files is the following:

carlos AA BB CC DD EE.dat

AA= Number of nodes in the network.

BB= Number of branches in the network

CC= Number of messages or path traversal**

DD= Network variation number (used mainly to test the model)

EE= Never used

** For purposes of this research, a message represents a path of buses traversed.

The model uses these paths entered to evaluate their total delay and verify that the

path has not violated its timing constraint. These paths are part of the input file.
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4.4 Result evaluation

The information needed to interpret the result is described in this section.

4.4.1 Output file. The output file generated by the model contained a

description of the scenario run and the solution found during after the optimization

was completed.

The output included the following information:

1. Scenario ran

2. Threshold file used during the trial

3. Incidence matrices for network as well as for domains created

4. Locations in the network where trust nodes were placed

5. Communication Protection and control traffic entered

6. Delay induced by trust nodes

7. Threshold values used

8. Delay caused by traversing the path

9. Total delay (trust node Delay + Path Delay)

4.4.2 Measurements, Units and Calculations. IEEE raw test case

information is provided using the English measurement system (i.e. inches, miles,

etc). All the information used in this research was converted to the metric system.

The delay unit used for network input was milliseconds (msec). However, the run

times produced by the model are given in seconds (secs).

4.4.3 Figure interpretation. The figures in this chapter showing the resulting

configurations are interpreted as follows:

• The colored/shaded regions represent the domains formed. And the buses

inside this regions belong to this domain.
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• The red/dark buses represent a bus where a trust node has been placed.

4.5 Observation variables

The variables being modified on each scenario to observe their effect on the

result produced are the following:

• Minimum number of nodes per domain or sub-network (Section 3.2).

• Maximum number of trust nodes available.

By running scenarios with different value for these variables, it was expected

that different configurations would be produced by the model.

We now evaluate individually the effects caused by the variables described in

Section 4.5.

4.6 Model Variables Effects

The first variable evaluated in this section is the minimum number of buses on

each domain, and the second is the maximum number of trust nodes allowed during

that trial. The figure sequence shown in Fig. 4.1 demonstrate the effects caused by

the modification of the variables that determine the maximum number of trust

nodes and the minimum number of buses per domain. This set of trials were run

using the messages shown in five-message section.
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(a) 2 trust Nodes, 2 nodes per do-
main minimum

(b) 2 trust nodes, 4 nodes per do-
main minimum

(c) 2 trust nodes, 7 nodes per domain
minimum

(d) 4 trust Nodes, 2 nodes per do-
main minimum

(e) 4 trust nodes, 4 nodes per do-
main minimum

(f) 4 trust nodes, 7 nodes per domain
minimum

(g) 7 trust Nodes, 2 nodes per do-
main minimum

(h) 7 trust nodes, 4 nodes per do-
main minimum

(i) 7 trust nodes, 7 nodes per domain
minimum

Figure 4.1: Configuration changes using different input values on the same scenario

4.6.1 Minimum number of buses per domain. This variable determines the

least amount of buses that the optimizer may place in a domain. It is a

semi-continuous variable, because it is not allowed to have values greater than zero

or less than the minimum value entered. In other words, the domains created can

have zero elements or be greater than or equal to the minimum value entered.
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The resulting configurations show that by increasing this variable and keeping

the other variable constant will have different effects depending on the magnitude of

the value of the maximum number of trust nodes. If we observe Fig 4.1 and evaluate

the results shown from figure 1(a) through 1(c), we see that when the maximum

trust nodes value is small, the effect of the minimum number of buses variable on

the result is minimum. This is not the case on the second and third line, it modifies

on the configuration produced, the size of the domains increases as the value of this

variable increase as well.

4.6.2 Maximum number of trust nodes. We can observe this variable’s effect

if we examine the series of figures vertically. In the first column of figures, the

minimum number of buses remained constant at two as the maximum number of

trust nodes increases the number of domains produced increased. The optimizer is

able to produce more domains with the more trust nodes it was allowed to work

with. However, as we move to the last column its effect is reduced to the point

where on the very last figure, even though it is allowed to place seven trust nodes it

only utilized two. The minimum number of buses per node did not allow for more

domains to be created.

4.6.3 Variable effect analysis. As we have seen this variables may or may not

have an effect on the configuration produced. It will depend closely on the value of

the other variable. When both variables have a small value, the output will very

similar to the output produced when both values have large values. The output will

be bounded by the value of the number of trust nodes is small regardless of the

value of the number of nodes. On the other hand, the result is bounded by the

minimum number of trust nodes, regardless of the number of trust nodes allowed. It

is also worth mentioning, that it appears that there is a point in the experiment

where the output is similar, if we observe the top row and right column, the

configuration is almost identical. However, figures 1(b), 1(e), 1(f), and 1(f) reflect a

diversity of topologies.

78



Table 4.1 shows the running times for the trials shown in Fig.4.1.

Table 4.1: Running times for network with 14 Nodes, and 5 messages in Windows
Sub-figure Trust Min Nodes Domains Running
number nodes p/domain created Time

1(a) 2 2 2 8.999
1(b) 2 4 2 0.546
1(c) 2 7 2 0.110
1(d) 4 2 3 48.061
1(e) 4 4 3 0.203
1(f) 4 7 2 0.109
1(g) 7 2 5 25.811
1(h) 7 4 3 0.172
1(i) 7 7 2 0.188

From this table, we can see that the cases 1(d) and 1(g) are the slowest running

cases. This is somewhat reasonable, since the number of trust nodes has increased,

and with a low minimum number of trust nodes is able to break down the network

into smaller domains. Therefore the number of feasible solutions increases increasing

the solution space that is being searched as well.

It is worth mentioning that similar behavior was observed in other scenarios ran

during this research. We now examine specific cases of the different topologies

examined during this research.

4.7 Scenario Runs

There were a total of nineteen different scenarios ran throughout this research.

Each scenario has a different number of nodes, edges or messages added to the file.

This included three scenarios with four nodes, five scenarios with five nodes, three

scenarios with seven nodes, three scenarios with fourteen nodes, one scenario with

twenty nodes, two scenarios with thirty nodes, and one scenario with fifty-seven

nodes. The scenarios that have the same number of nodes or edges, are different

because the nodes are connected differently or the weight of the edges is different.
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Each scenario was ran several times (see Table 4.2) using different values for the

following variables in the input file:

For brevity, only three scenarios are examined during this chapter. Table 4.2

shows the three scenarios evaluated in this chapter.

Table 4.2: Number of runs per scenario
Scenario Number of Runs

14 Bus, 20 Branch 75
20 Bus 39 Branch 25
30 Bus 41 Branch 9

4.7.1 Fourteen Node Scenario. This scenario was obtained from the IEEE 14

Bust Test Case, which represent a portion of the American Electric Power System,

Midwestern US; as of February, 1962.

This network scenario was run using three different input files with three, five

and ten messages (or test paths).

4.7.1.1 Three-message scenario, Linux runs. This scenario was

run in both operating systems, Linux and Windows. Following are some of the times

obtained during the runs that were processed in Linux; these scenarios are listed in

Table 4.3:

Table 4.3: Running times for Network with 14 Nodes, and 3 messages in Linux
Op Trust Min Nodes Domains Running

System nodes p/domain created Time
Linux 2 5 2 0.108
Linux 3 7 4 0.177
Linux 5 3 4 0.295
Linux 2 3 2 1.641
Linux 7 2 5 616.000
Linux 2 2 2 10.389
Linux 5 2 4 313.000
Linux 5 4 3 0.146
Linux 3 3 2 1.058
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The fastest run was the case with two trust nodes and a minimum of five

nodes per domain. The model created two domains. We can observe the

configuration resulting from the optimization in Fig. 4.2. It is important to observe

that the optimizer placed the trust nodes at nodes where messages and any traffic

between domains can be monitored. Node five, has three branches leading to the

other domain, and node nine has two branches; there are no other branches between

domains.

Figure 4.2: Configuration for a 14 Node network, 2 trust nodes, 5 minimum nodes
per domain

Table 4.4 shows the paths tested on this scenario and also the delay times caused

by the path only, the trust nodes that were placed along the path, and lastly the

threshold that paths was subject. The total delay on each of the paths is less than

the time threshold they were subject to.

Table 4.4: Message paths for the 14 node, 3 message fastest case in Linux
Nodes Traversed Time tN Delay Total Delay Threshold

Path 1 6 13 42 0 42 2000
Path 2 7 4 5 6 12 1200 1212 4000
Path 3 8 7 4 5 12 90 1200 1290 4000
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The slowest run was seen in the case where there were seven trust nodes

available and a minimum of two nodes per domain allowed. For this case, the

optimization allowed five domains to be created. The optimizer utilized all seven

trust nodes, and we can observe in Fig. 4.3 that it places the trust nodes in such a

way that the communication between domains is secured. Similarly, the minimum

number of nodes per domain has been satisfied as well. The trust node requirement

is that at least one of the domains monitors the transmission of messages, so that

minimize the delay introduced by trust nodes but at the same time, each message

traveling between domains is either checked for security irregularities at the time is

leaving or arriving to the domain. The resulting configuration in Fig. 4.3 enforces

the above description.

Figure 4.3: Configuration for a 14 Node network, 7 trust nodes, 2 minimum nodes
per domain

Table 4.5 show the values of the delays that were induced due to the path

traversal and its passing through the nodes with trust nodes. We can observe that

message number three approaches the threshold.
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Table 4.5: Message paths for the 14 node, 3 message slowest case in Linux
Nodes Traversed Time tN Delay Total Delay Threshold

Path 1 1 2 3 21 0 21 2000
Path 2 6 13 21 1200 1221 4000
Path 3 7 4 5 6 6 1800 1806 4000

4.7.1.2 Three-message, Windows runs. For this scenario, the times

were very close to the results obtained with the Linux version. Table 4.6, shows

some of the times obtained.

Table 4.6: Running times for Network with 14 Nodes, and 3 messages in Windows

Op Trust Min Nodes Domains Running
System nodes p/domain created Time
Windows 2 5 2 0.094
Windows 3 7 2 0.094
Windows 5 3 2 0.930
Windows 2 3 2 1.641
Windows 7 2 5 616.000
Windows 2 2 2 10.827
Windows 5 2 4 312.000
Windows 5 4 3 0.146
Windows 3 3 3 1.656

The fastest scenario was the scenario with two trust nodes and two nodes per

domain minimum, its time was 0.094. Fig. 4.4, shows the configuration that the

optimizer produced.

This case illustrates what the optimizer opts to do when the number of resources

is small. The optimizer is allowed only 2 trust nodes, therefore looks for a better

way to satisfy the constraints of contiguous nodes in domains and also trust node

strategic placement monitor incoming and outgoing messages. In this case, trust

nodes four and five are good solutions. There can be many other solutions to this

case. The network configurations output are feasible solutions given the constraints

that the input parameters were subject to during the optimization.
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Figure 4.4: Configuration for a 14 Node network, 2 trust nodes, 2 minimum nodes
per domain

Table 4.7 shows the delay accumulation of the three messages passed on to the

optimizer, neither of them exceeded time constraints. The longest message passes

through two trust nodes which adds 1, 200 msecs. of delay, but it is still less than

the threshold for messages transmission.

Table 4.7: Message paths traversed for the 14 Node 3 message fastest case in
Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 3 21 0 21 2000
Path 2 6 13 21 0 21 4000
Path 3 7 4 5 6 6 1200 1206 4000

The case with the slowest running time evaluated was run with seven trust nodes

and a minimum of two nodes per domain. Fig.4.5 shows the network configuration

produced after the trial was run.

Table 4.8 shows the paths that were evaluated during this trial. The path with

the longest delay is path three with 1, 207 msecs. The model has arranged the
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Figure 4.5: Configuration for a 14 Node network, 7 trust nodes, 2 minimum nodes
per domain

domains and the locations of the trust nodes considering the traffic of messages

input to the model.

Table 4.8: Message paths traversed for the 14 Node 3 message slowest case in
Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 3 21 600 621 2000
Path 2 2 5 6 12 57 600 657 4000
Path 3 8 7 4 5 6 7 1200 1207 4000

4.7.1.3 Five-message , Linux runs . The results obtained in this

trial can be observed in Table 4.9.

The fastest run occurred when the model was allowed a maximum of six trust

nodes and the minimum number of nodes per domain was set to five. The resulting

running time was 0.15 msecs. Fig. 4.6 contains the solution provided by the

optimizer.

Table 4.10 shows the results for this run. The message paths used in this run

were entered manually. Consequently, we find some paths that are not the shortest
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Table 4.9: Running times for 14 node network with and 5 messages in Linux
Op Trust Min Nodes Domains Running

System nodes p/domain created Time
Linux 10 2 4 23.768
Linux 7 4 3 0.150
Linux 7 3 4 0.238
Linux 7 2 4 11.227
Linux 10 2 4 23.768
Linux 4 2 3 20.408
Linux 4 3 2 4.717
Linux 7 2 5 47.940
Linux 7 3 4 0.238
Linux 7 4 3 0.150
Linux 6 5 2 0.105
Linux 6 3 4 0.310
Linux 6 4 3 0.145
Linux 6 2 5 12.605
Linux 4 2 3 139.000
Linux 5 2 2 9.860

Figure 4.6: Configuration for a 14 Node network, 7 trust nodes, 4 minimum nodes
per domain

paths. However, the results still come short from the thresholds that they were run

against. The path with the longest delay is path number two. Although the delay

caused by the traversing is only 58 msecs, the message stops at 4 trust nodes
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causing the delay to quickly increase. To solve this, rules can carefully be defined ,

so that we do not duplicate security functions within the same domain.

Table 4.10: Message paths and delays for the 14 Node, 5 message fastest case in
Linux

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 4 9 14 13 118 1200 1318 2000
Path 2 11 10 9 4 3 58 2400 2458 4000
Path 3 8 7 9 14 13 12 164 600 764 4000
Path 4 14 9 4 2 59 600 659 180000
Path 5 5 4 7 9 10 16 1800 1816 300000

The slowest run in this scenario happened when the maximum trust node

allowed variable was set to 4 and the minimum nodes per domain was set to 2. The

optimizer provided 3 domains with a large domain containing nine nodes out of the

fourteen; the other 2 domains had three and two nodes in them. The reason, for this

number was mainly because of the number of trust nodes that were available. Fig.

4.7 shows the domain configuration mentioned above.

Figure 4.7: Configuration for a 14 Node network, 4 trust nodes, 2 minimum nodes
per domain
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In Table 4.11 the message paths used in the previous section are used with

different configuration. The optimizer outputs configurations which enforce the

times constraints or thresholds listed in the last column.

The thresholds of 180, 000 and 300, 000 msecs entered correspond to the thermal

overload and poorly damped, or un-damped oscillations time constraints from the

Backup protection and Control; WAPaC system. The threshold do not state a

specific length of time, so an estimate of 180 secs and 300 secs was entered. For

reference see table 2.3.

Table 4.11: Message paths traversed for the 14 Node, 5 message fastest case in
Linux

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 4 9 14 13 118 1200 1318 2000
Path 2 11 10 9 4 3 58 1800 2458 4000
Path 3 8 7 9 14 13 12 164 1200 764 4000
Path 4 14 9 4 2 59 600 659 180000
Path 5 5 4 7 9 10 16 1200 1816 300000

4.7.1.4 Five-message, Windows runs. Fig. 4.12 displays the results

for the 14 node case. There is no significant difference between the Windows cases.

The case with ten trust nodes and a minimum of two nodes per domains is

shown in Fig. 4.8. The model produced a total of four domains, and placed the

trust nodes in nodes five, six, seven, nine, ten, eleven, and twelve.

The model choses a solution where it has grouped a set of nodes based on the

degree of the protection that the placement of a trust node adds to the network,

without regarding proximity. For example, node nine and fourteen have a delay of

40msecs and the edge between nine and four, or seven has a delay of 1msec and still

nodes nine and fourteen have been placed together but separate from nodes four and

seven. This is because the constraints allow to place greater importance when

choosing the position of a trust node.
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Table 4.12: Running times for scenario with 14 Nodes, 5 messages in Windows
Op Trust Min Nodes Domains Running

System nodes p/domain created Time
Windows 10 2 5 10.64
Windows 7 4 3 0.187
Windows 7 3 4 0.391
Windows 7 2 5 25.186
Windows 6 5 2 0.109
Windows 6 4 3 0.344
Windows 6 3 4 0.500
Windows 6 2 5 7.672
Windows 5 2 4 135.00
Windows 4 3 3 1.328
Windows 4 2 3 48.061
Windows 3 2 3 36.545
Windows 2 2 2 8.968

Figure 4.8: 14 Node network, Maximum of 10 trust nodes, and a minimum of 2
nodes per domain

Table 4.13 shows the times resulting from this run. The message paths input,

were entered manually and do not represent the shortest path between the source

and destination node.

Next, Fig. 4.9 displays what the optimizer does as the number of trust nodes

allowed is reduced. It creates larger domains so that it compensates for the reduction
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Table 4.13: Message paths traversed for the 14 Node, 5 message fastest case in
Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 4 9 14 13 118 600 718 2000
Path 2 11 10 9 4 3 58 2400 2458 4000
Path 3 8 7 9 14 13 12 164 1800 1964 4000
Path 4 14 9 4 2 59 600 659 180000
Path 5 5 4 7 9 10 16 2400 2416 300000

in trust nodes. This way, the need for trust nodes is reduced because the branches

between domains are less and it can use the fewer trust nodes more effectively.

Figure 4.9: 14 Node network, Maximum of 5 trust nodes, and a minimum of 2
nodes per domain

Table 4.14 shows the paths that were tested. We can observe that path number

two gets closer to the time constraint corresponding to its type of message, however,

the output configuration kept it below the time constraint, although the optimizer

utilized all of the trust nodes, it was able to placed them such that the message

traffic input did not exceed the constraints.

The minimum running time for this scenario was 0.105msecs, while the

maximum was 139.00msecs and the average was 21.148msecs. There is no

noticeable difference between the Windows and Linux runs of this scenario.
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Table 4.14: Message paths traversed for the 14 Node 5 message case in Windows
Nodes Traversed Time tN Delay Total Delay Threshold

Path 1 1 2 4 9 14 13 118 1200 1318 2000
Path 2 11 10 9 4 3 58 1200 1258 4000
Path 3 8 7 9 14 13 12 164 1200 1364 4000
Path 4 1 2 4 7 8 26 0 26 2000
Path 5 6 5 4 9 10 16 1200 1216 300000

4.7.1.5 Ten message Linux runs. The results for this case are shown

in Table 4.15. There is a climb in the running times for this scenario. The number

of messages appear to start having an effect on the complexity of the optimization.

Table 4.15: Running times for Network with 14 Nodes, and 5 messages in Linux
Op Trust Min Nodes Domains Running

System nodes p/domain created Time
Linux 10 2 6 357.000
Linux 7 4 3 0.170
Linux 7 3 4 0.188
Linux 7 2 5 3640.000
Linux 6 5 2 0.134
Linux 6 4 3 0.170
Linux 6 3 4 0.720
Linux 6 2 5 10844.000
Linux 5 2 4 16469.000
Linux 4 3 3 35.944
Linux 4 2 2 0.762
Linux 3 3 3 3.103
Linux 3 2 3 77.000
Linux 2 2 2 7.585

As we can see, if the number of trust nodes is left constant and reduce the

minimum number of nodes per domain the running times increase rapidly. However,

as the maximum number of trust nodes is reduced as well, the rate at which the

running times increases slows down.

The overall statistics show a spike in the running times. The fastest scenario ran

for 0.134 secs, and the slowest scenarios ran for 16, 469 secs. The average time was

2, 336.052 secs. This number shows that the time spread in the data points is large.
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Fig. 4.10 represents the configuration produced by the optimizer. Note that the

domain composed by nodes 1,2,3,4,5 does not contain a trust node in it.

Nonetheless, overall network security has been preserved. However, there is no

branch leaving this domain that connects to other domains where a trust node is not

present.

Figure 4.10: Configuration for a 14 Node network, 6 trust nodes, 2 minimum nodes
per domain

Table 4.16 shows the resulting delay for all ten messages entered for this trial.

Each simulated message has been assigned a different message type from the

operating constraints defined in Chapter 2. We can see that every message has met

the time constraint that it has been subject to.
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Table 4.16: Message paths traversed for the 14 Node, 10 message case in Linux
Nodes Traversed Time tN Delay Total Delay Threshold

Path 1 4 9 10 11 1200 1211 2000
Path 2 1 5 4 9 14 62 600 662 4000
Path 3 14 9 7 41 1200 1241 4000
Path 4 2 4 18 0 18 100000
Path 5 8 7 9 2 1200 1202 180000
Path 6 7 4 5 6 12 44 1200 1244 300000
Path 7 11 6 5 2 49 1200 1249 6000
Path 8 3 4 5 6 12 64 600 664 3600000
Path 9 5 6 12 39 600 639 540000
Path 10 13 6 5 4 3 47 1200 1247 100000

4.7.1.6 Ten message Windows runs. Table 4.17 shows the running

times obtained during this case.

Table 4.17: Running times for Network with 14 Nodes, and 10 messages in Windows

Op Trust Min Nodes Domains Running
System nodes p/domain created Time
Windows 10 2 6 916.000
Windows 7 4 3 0.171
Windows 7 3 4 0.219
Windows 7 2 5 3640.000
Windows 6 5 2 0.125
Windows 6 4 3 0.375
Windows 6 3 4 0.625
Windows 6 2 5 3329.000
Windows 5 2 - CRASHED
Windows 4 3 3 14.417
Windows 4 2 3 759.000
Windows 3 2 3 74.000
Windows 2 2 2 8.559

The next three figures provide an idea of how the optimizer behaves when the

values of the test variables of maximum amount of trust nodes and the minimum

number of nodes per domain are changed. The figures illustrate the evolution of

modifications performed as the parameters change. We can see starting from

Fig.11(a) how the solution evolves to Fig.11(b) and ends with Fig.11(c). As the
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number of trust nodes increases the optimizer is able to build solutions with more

domains, because it is able to protect the traffic between them as long as it does not

go below the minimum number of nodes per domain.

(a) 3 trust Nodes, 2 nodes per domain minimum (b) 4 trust nodes, 3 nodes per domain minimum

(c) 6 trust nodes, 3 nodes per domain minimum

Figure 4.11: Configuration changes using different input values on the same scenario

Table 4.18 shows the delay resulting from running the trial shown on Fig. 11(b).

Lastly, the configuration output by the model preserves all the thresholds that have

been provided to it.
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Table 4.18: Message paths traversed for the 14 Node, 10 message case in Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 4 9 10 11 1200 1211 2000
Path 2 1 5 4 9 14 62 1800 1862 4000
Path 3 14 9 7 41 600 641 4000
Path 4 2 4 18 600 618 100000
Path 5 8 7 9 2 600 602 180000
Path 6 7 4 5 6 12 44 1800 1844 300000
Path 7 11 6 5 2 49 1200 1249 6000
Path 8 3 4 5 6 12 64 1800 1864 3600000
Path 9 5 6 12 39 1200 1239 540000
Path 10 13 6 5 4 3 47 1800 1847 100000

4.7.2 Twenty Node Scenario . The network represented in this scenario

does not represent an actual case of a power grid region. It is a simulated

configuration created only to provide a step before moving into a higher node

network.

The scenarios reported in this section are only two of the four different network

files tested. The first scenario has a total of ten messages, and the second scenario

has 20 messages. This scenario was ran in Linux and Windows operating systems.

Each one, was ran utilizing twelve different combinations of values for the maximum

number of trust nodes and the minimum number of nodes per domain variables.

4.7.2.1 Ten message Linux runs. The summary of results for this

run are shown in Table 4.19.

The trial with 14 trust nodes and 2 minimum nodes per domain shows with

great detail what the optimizer does when it has many trust nodes to subdivide the

network. It shows that having a large amount of trust nodes increases the security

of the network because it allows the optimizer to create a larger number of domains

and isolates them by placing a trust node at strategic locations as shown in Fig.

4.12.
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Table 4.19: Running times for Network with 20 Nodes, and 10 messages in Linux
Op Trust Min Nodes Domains Running

System nodes p/domain created Time
Linux 14 6 3 1.141
Linux 14 4 5 2.316
Linux 14 3 6 2.776
Linux 14 2 9 3605.000
Linux 10 5 4 2.401
Linux 10 4 5 2.848
Linux 10 3 6 25.130
Linux 10 2 6 3604.000
Linux 5 6 3 0.688
Linux 5 4 3 918.000
Linux 5 3 3 3681.000
Linux 3 3 2 151.000

Figure 4.12: 20 Node network, Maximum of 14 trust nodes, and a minimum of 2
nodes per domain

In comparison with the runs from the previous section, there is no noticeable

increase of running times. The minimum time is 0.688 secs, the maximum time is

3, 681 msecs and the average is 999.6917 secs. The values presented in Table 4.20

support the time constraint premise, since none of the times violate the constraint

the bounds the time alloted to that type of message.
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Table 4.20: Message paths traversed for the 20 Node, 10 message case in Linux
Nodes Traversed Time tN Delay Total Delay Threshold

Path 1 1 19 40 600 640 2000
Path 2 2 4 7 9 10 186 2400 2586 4000
Path 3 3 4 7 9 14 244 2400 2644 4000
Path 4 17 16 6 145 1800 1945 1000000
Path 5 8 18 46 600 646 6000
Path 6 5 4 7 9 116 1800 1916 3600000
Path 7 12 6 5 4 3 233 1800 2033 540000
Path 8 10 11 62 1200 1262 3600000
Path 9 14 13 6 16 17 299 3000 3299 1000000
Path 10 18 13 6 5 2 201 3000 3201 300000

4.7.2.2 Ten message, Windows runs. The summary of results for

this run are shown in Table 4.21

Table 4.21: Running times for Network with 20 Nodes, and 10 messages in Windows

Op Trust Min Nodes Domains Running
System nodes p/domain created Time
Windows 10 2 6 916.000
Windows 7 4 3 0.171
Windows 7 3 4 0.219
Windows 7 2 5 3640.000
Windows 6 5 2 0.125
Windows 6 4 3 0.375
Windows 6 3 4 0.625
Windows 6 2 5 3329.000
Windows 5 2 - CRASHED
Windows 4 3 3 14.417
Windows 4 2 3 759.000
Windows 3 2 3 74.000
Windows 2 2 2 8.559

Fig.4.13 shows the configuration produced when running the model using

variables maximum trust nodes of ten, and a minimum nodes per domain of four.

The optimizer build a total of five domains, and once again we can observe that the

trust nodes have been placed at places where they are able to monitor or oversee the

traffic leaving or arriving to that specific domain. If we notice, nodes six and eleven
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contain trust nodes and they are contiguous nodes. This situation increases the

delay of a message path, and it may be somewhat redundant. This delay could be

reduced if we could carefully implement a security system where a trust node is able

recognize that a message has been scanned by another trust nodes next to it, or in

the same domain and maybe perform basic checks for protection or simply not touch

the message.

Figure 4.13: 20 Node network, Maximum of 10 trust nodes, and a minimum of 4
nodes per domain

Table 4.22 shows the results obtained from this trial.
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Table 4.22: Message paths traversed for the 20 Node, 10 message case in Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 19 40 600 640 2000
Path 2 2 4 7 9 10 186 1800 1986 4000
Path 3 3 4 7 9 14 244 1800 2044 4000
Path 4 17 16 6 145 1200 1345 1000000
Path 5 8 18 46 600 646 6000
Path 6 5 4 7 9 116 1800 1916 3600000
Path 7 12 6 5 4 3 233 1200 1433 540000
Path 8 10 11 62 600 662 3600000
Path 9 14 13 6 16 17 299 1800 2099 1000000
Path 10 18 13 6 5 2 201 2400 2601 300000

4.7.2.3 Twenty message Linux runs. Table 4.23 shows the number

of domains formed and the running times for the twenty message Linux runs. We

begin to observe a rise in the running times in comparison with previous runs. The

longest run was for 2029 secs. for the configuration that allowed five trust nodes and

a minimum of three nodes per domain. The fastest trial run was the configuration

that had a fourteen trust nodes and a minimum of six domains with a running time

of 1.173 secs. The optimizer created three domains to come out with this solution.

Table 4.23: Running times for a 20 Node Network and 20 messages in Linux
Op Trust Min Nodes Domains Running

System nodes p/domain created Time
Linux 14 6 3 1.173
Linux 14 6 4 15.269
Linux 14 3 5 58.147
Linux 14 2 3 21699.000
Linux 10 5 4 1.554
Linux 10 4 4 21.412
Linux 10 3 5 54.565
Linux 10 2 6 21634.000
Linux 5 6 3 1.861
Linux 5 4 3 88.000
Linux 5 3 3 2029.000
Linux 3 3 2 66.000
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Table 4.24: Message paths traversed for the 20 Node, 20 message case in Linux
Nodes Traversed Time tN Delay Total Delay Threshold

Path 1 1 2 4 76 0 76 3600000
Path 2 20 7 8 18 13 190 1800 1990 1000000
Path 3 12 6 5 2 220 1200 1420 6000
Path 4 16 6 13 18 8 155 3000 3155 180000
Path 5 7 8 18 103 1200 1303 540000
Path 6 13 6 16 87 1800 1887 4000
Path 7 17 15 5 4 7 20 256 600 856 2000
Path 8 15 5 4 7 9 149 600 749 300000
Path 9 10 9 7 4 2 186 600 786 3600000
Path 10 8 7 4 5 138 1200 1338 180000
Path 11 1 5 6 13 18 217 2400 2617 6000
Path 12 5 4 7 9 14 203 1200 1403 1000000
Path 13 6 13 18 8 110 2400 2510 300000
Path 14 6 13 18 64 1800 1864 1000000
Path 15 12 6 5 2 220 1200 1420 540000
Path 16 5 4 3 69 600 669 1000000
Path 17 4 5 6 13 18 159 2400 2559 6000
Path 18 13 6 5 2 179 1800 1979 300000
Path 19 12 13 18 8 7 20 254 1800 2054 3600000
Path 20 19 1 5 6 13 18 257 3000 3257 1000000

Fig.4.14 shows the resulting configuration when the system has ten trust nodes

available to place in the network. This solution produced a total of six domains. It

seems like the answer is not the best solution possible. It contains a domain

containing eight nodes and four domains with only two nodes in them. There are

several nodes where redundant placement of trust node has occurred. A solution

with a more even number of nodes per domain seems to be more appropriate and

probably a better utilization of trust node resources to improve network security.

Table 4.24 on page 100, shows the paths entered in to this case. This paths were

created automatically using the shortest path application developed for this research.
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Figure 4.14: 20 Node network, maximum of 10 trust nodes, and a minimum of 2
nodes per domain

4.7.2.4 Twenty message Windows runs. Table 4.25 on page

102 presents the running times obtained after running this scenario.

The Windows optimizer crashed twice in the first run. Each of the scenarios that

crashed were reran for a total of three tries. On all three runs, the memory available

counter in the IVE had about 760 MBytes left by the time the optimizer halted.

Once this happened, the XPress-MP had to be restarted as it would become

completely unstable. Therefore, no results were available for those scenarios.

Fig.4.15 on page 102, shows the configuration produced by the windows

optimizer for this case. In this case, we increased the minimum number of nodes per

domain allowed. This parameter combination seem to produced a better result as

far as the number of nodes per domain. The range in the number of nodes per

domain is smaller. The most populated domain has six nodes and the least

populated has four nodes.
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Table 4.25: Running times for Network with 20 Nodes, and 20 messages in Windows

Op Trust Min Nodes Domains Running
System nodes p/domain created Time
Windows 14 6 3 0.547
Windows 14 6 4 6.578
Windows 14 3 5 39.343
Windows 14 2 - CRASHED
Windows 10 5 4 1.218
Windows 10 4 4 4.406
Windows 10 3 5 42.342
Windows 10 2 - CRASHED
Windows 5 6 3 1.172
Windows 5 4 3 53.202
Windows 5 3 3 752.000
Windows 3 3 2 74.000

Figure 4.15: 20 Node network, maximum of 10 trust nodes, and a minimum of 4
nodes per domain

Table 4.26 on page 103, shows the delay on each of the paths input to the

model, neither of the message paths violated its time constraint. We can see that

some of the thresholds are large enough to not allow this. However, we can see that
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some of the messages could have violated a 2 msec (2000) constraint if they have

had been entered with a different message type.

Table 4.26: Message paths traversed for the 20 Node, 20 message case in Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 4 76 600 676 3600000
Path 2 20 7 8 18 13 190 1200 1390 1000000
Path 3 12 6 5 2 220 1800 2020 6000
Path 4 16 6 13 18 8 155 1200 1355 180000
Path 5 7 8 18 103 600 703 540000
Path 6 13 6 16 87 600 687 4000
Path 7 17 15 5 4 7 20 256 600 856 2000
Path 8 15 5 4 7 9 149 1200 1349 300000
Path 9 10 9 7 4 2 186 1800 1986 3600000
Path 10 8 7 4 5 138 1200 1338 180000
Path 11 1 5 6 13 18 217 1200 1417 6000
Path 12 5 4 7 9 14 203 1800 2003 1000000
Path 13 6 13 18 8 110 1200 1310 300000
Path 14 6 13 18 64 600 664 1000000
Path 15 12 6 5 2 221 1800 2021 540000
Path 16 5 4 3 69 600 669 1000000
Path 17 4 5 6 13 18 159 1200 1359 6000
Path 18 13 6 5 2 179 1800 1979 300000
Path 19 12 13 18 8 7 20 254 1800 2054 3600000
Path 20 19 1 5 6 13 18 257 1800 2057 1000000

4.7.3 Thirty Node Scenario . This scenario was built using the data from

the Power Systems Test Case Archive. This section shows the different

configurations tested with ten messages as the input traffic. Additionally, the results

from the Windows and Linux trials are shown here.

4.7.3.1 Thirty message Linux runs. This section will summarize the

results obtained from running the thirty node network varying the values for the

maximum number of trust nodes and the minimum number of nodes per domain.

Table 4.27 summarizes the running times and the number of nodes created on each

103



Table 4.27: Running times for 30 Node network with 14 Nodes, and 10 messages
in Linux

Op Trust Min Nodes Domains Running
System nodes p/domain created Time
Linux 14 6 5 5.8121
Linux 10 6 5 24.421
Linux 5 6 3 3612.000
Linux 14 4 7 11.966
Linux 10 4 6 3607.000
Linux 5 4 3 3622.000
Linux 15 6 5 6.383
Linux 15 4 7 12.402
Linux 15 8 3 2.405
Linux 12 8 3 2.952
Linux 10 8 3 2.699
Linux 6 8 3 2.995

trial. The configuration that has the shortest running time is the ninth trial in the

table, it created three domains and ran for 2.405.

The slowest trial ran for 3622 secs. This trial does present a slight increase of

running times. If we compare the fastest case from the previous Linux run

containing 10 messages (20 Node scenario); we get an increase of over 300% which is

probably our greatest increase rate. However, the longest time and the average do

not show the same increase rate.

Fig.4.16 illustrates the configuration produced when running the model with ten

trust nodes and minimum of six nodes per domain this network with a maximum of

ten trust nodes and a minimum of six nodes per domain. The number of nodes per

domain is evenly distributed among all the domains. We can observe that the trust

nodes have been placed at nodes that connect to other domains, such that no

message be able to leave or enter a domain without being monitored.
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Figure 4.16: 30 Node network, Maximum of 10 trust nodes, and a minimum of 6
nodes per domain

Finally, Table 4.28 summarizes the paths input to the model and their delays

with the configuration presented in Fig. 4.16.

Table 4.28: Message paths traversed for the 30 Node, 10 message case in Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 4 6 10 5 1200 1205 2000
Path 2 1 3 4 12 15 40 1200 1240 4000
Path 3 30 27 28 6 7 113 1800 1913 6000
Path 4 22 21 10 6 4 12 14 60 2400 2460 360000
Path 5 18 15 12 4 2 74 1800 1874 4000
Path 6 7 6 9 9 1800 1809 300000
Path 7 6 28 7 600 607 180000
Path 8 11 9 10 21 13 1200 1213 4000
Path 9 12 13 1 600 601 1000000
Path 10 13 12 4 6 10 17 17 2400 2417 540000
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4.8 57 Node Scenario

As stated at the beginning of this chapter, the test cases examined in this

chapter were not the only ones that were explored. A larger IEEE test case was run

on four different occasions. The first two times the scenario was run, it was left to

run without a time limit. The first time it ran for approximately over (no record of

stopping time was available) three days. After the third day, the run crashed while

unattended; there was no error message or anything to provide any information

about the cause of the failure. The second time, it ran for four days also. This time,

we used a Linux application called “screen” which is used to keep applications

running under the “screen” active even in the event when the connection to the

Linux service is dropped or session log offs was used. The process ID corresponding

to the Mosel run was monitored closely to identify any circumstances that may have

lead to the first failure. The CPU was being used at 100% and the memory was

being used at 99.7% as well. Unfortunately, the application failed to keep the session

active and no record of this run was recover either.

The last two runs, were timed to run for four and six hours. However, the results

that were obtained on both cases were different from each other and also erroneous.

The domains created were not contiguous, in other words a domain contains nodes

without an edge connecting them different regions within the network but different

on both runs. This results suggest the possibility that the run had not arrived to a

feasible solutions when it is stopped and that more run time may be needed to

achieve a better solution. Appendix VI illustrates one of the configurations output

by one of the runs.

4.9 Note on Windows runs

It is important to note, that when the model was executed in Windows; it

crashed in several occasions. Even on smaller cases that lasted three or four hours in

the Linux version, the Windows based would not be able to complete the trial and

crashed. In addition to this, the optimizer would prompt the user to close the
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XPress-MP because the system was unstable, after closing the message box the

optimizer was noticeable erratic in behavior. The only way to fix this behavior was

to close the optimizer completely and restart again.

4.10 Totals

Table 4.29 shows the totals for each of the scenarios ran and final values for the

overall research runs. The scenarios that have an asterisk (*) in the average time

have trials that crashed and no running time was collected.

Table 4.29: Total Results for the over all runs shown in this document
Scenario Op System Fastest Slowest Avg Time

14 Node 3 Msgs Linux 0.099 616.000 104.757
14 Node 3 Msgs Windows 0.094 1709.000 188.111
14 Node 5 Msgs Linux 0.105 139.000 17.878
14 Node 5 Msgs Windows 0.109 135.000 21.149
14 Node 10 Msgs Linux 0.134 16469.000 2415.386
14 Node 10 Msgs Windows 0.125 3640.000 *625.186
20 Node 10 Msgs Linux 0.688 3681.000 999.691
20 Node 10 Msgs Windows 1.36 1497.000 175.177
20 Node 20 Msgs Linux 0.956 21634.000 2179.161
20 Node 20 Msgs Windows 0.547 752.000 *97.481
30 Node 10 Msgs Linux 2.405 3622.000 909.420
30 Node 10 Msgs Windows 1.453 116.000 *21.545

4.11 Reduced Response Times or Thresholds

As an exploration for this research, different scenarios were run utilizing an

alternate threshold file containing reduced thresholds to observe how the optimizer

changed the output as some of the messages actually exceeded the modified

threshold.

It was observed that when the input contains messages (or traffic) that exceeds

its threshold, the optimizer generates a different configuration that complies with

the traffic needs. In doing so, the model ensures that the traffic patterns entered the
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removes trust nodes from the configuration in order to reduce the delay introduced

by the trust node throughout the message’s path.

To better illustrate this claim, the Fig. 4.17 shows the change caused by the

reduction in response time threshold. The input parameters were exactly the same.

(a) Original response threshold times (b) Reduced response threshold times

Figure 4.17: Configurations results using 2 different response time values

The domains formed are different, and therefore the locations of the trust nodes

is different as well. Table 4.30 shows the original results.

Table 4.30: Message paths traversed for the 14 Node 3 message slowest case in
Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 4 24 600 624 2000
Path 2 2 5 6 57 1200 1257 4000
Path 3 8 7 4 5 6 7 1800 1807 4000

Table 4.31 shows the resulting delay and the thresholds that those paths were

compared to.
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Table 4.31: Message paths traversed for the 14 Node 3 message slowest case in
Windows

Nodes Traversed Time tN Delay Total Delay Threshold
Path 1 1 2 4 24 0 24 600
Path 2 2 5 6 57 600 657 1200
Path 3 8 7 4 5 6 7 1200 1207 1800

4.12 Windows VS Linux

As stated before, this research was done utilizing two versions of the XPress-MP

optimizer; a Linux version and a Windows version. For unknown reasons, when

running exactly the same scenario separately on each operating system; the result

obtained was different. We speculate that this is a difference in random number

seeds, which resulted in different search patterns of the solution space. An example

of this discrepancy is shown in Fig.4.18. As we can see in this figure, the

configuration resulting from each of the operating systems is completely different.

The domains formed are different, the trust nodes are placed in different nodes, too.

However, both of the solutions comply with the optimization constraints. This

difference of results was not always the case, but it often presented itself throughout

the research. Since the results were verified to be feasible answers, these differences

were assumed to be correct.

(a) Windows Run (b) Linux Run

Figure 4.18: Fourteen Node scenario results from Windows and Linux
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4.13 Summary

The trials described in this chapter give a clear view of what this optimization

model does. The model produces reliable configurations regardless of platform

utilized. In each trial shown the model partitioned the network into domains and

placed trust nodes at locations where it was able to protect the integrity of all

communications between domains. But most importantly, the model is able to

produced an output with the above characteristics while respecting the constraints

of response time and domain contiguity. In this chapter, we saw that the model

produces different configurations based on the number of trust nodes available and

the minimum number of nodes per domain. When the model was alloted a large

number of trust nodes in comparison with the total nodes in the network, the model

would produce as many domains as possible, which is what our objective function is.
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V. Conclusions and Recommendations

5.1 Chapter Overview

This chapter gives a research overview, summarizes research findings,

establishes the significance and impact of this research, provides conclusions,

and the potential impact that the results of this thesis might have for future work.

Additionally, and finally it makes recommendations for follow-on work in this area.

5.2 Research Overview

Most of our critical infrastructure and especially our electric utility industry

operates under tight conditions. The demand for services has grown while the

transmission system’s capacity has experienced slower growth. This has caused the

system to become more unstable and has increased the risk of failure. The SCADA

system that monitors this delicate balance is modernizing and taking in new

technologies that bring in newer capabilities but at the same time, new

vulnerabilities. Consequently, security becomes paramount in an environment where

our critical infrastructure are a target of attacks that could weaken our economy.

Therefore, there is a strong need to protect our essential infrastructure with the

utilization of new technologies. A careful design of the network topology and the

implementation of a network security-based trust system added to the SCADA

provide an extra layer of protection against large attacks that may render our

society vulnerable. The challenge is to do so in a way or ways that will not disrupt

the time-critical protection and control systems in a SCADA system The research in

this article addresses this challenge through a trust system placement algorithm.

5.3 Summary of Research Findings

This research thesis explored the use of a new software program created

specifically for this research. This software utilizes linear programming techniques to

demonstrate that the fielding of the trust system along with the
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compartmentalization of a SCADA or power grid network is possible, and more

importantly; it is safe.

This research showed that the software, was accurate in producing feasible

solutions within a reasonable length of time, usually seconds or maybe a few hours.

Although, we can see that as the size of the network increased, the running times

increased as well. However, the larger running time increase was mainly due to the

values entered in the maximum number of trust nodes and the minimum number

nodes per domain; as these determine the size the solution space that the optimizer

will have to search. However, these times could considerably be reduced if the

optimizer was to be processed in higher end computer architectures.

The software developed was shown to perform efficiently and accurately under

different variations of the input scenario. The software was run against a total of

220 runs, each run represented a different network with either a different number of

buses (nodes) or the nodes connected by a different set of edges (branches). We also

varied the number of trust nodes that were available, the minimum number of nodes

that could be assigned to a domain. Moreover, we modified the number of messages

and their paths, to check for response time and check if they were violated when the

configuration was produced.

Furthermore, we took a configuration produced by a prior trial, used the path

delay in the output to create a threshold file with reduced values, such that those

paths were violating these thresholds from the beginning. And we ran this scenario

against the modified time threshold, and compared the results. We found that the

optimizer produced a different network configuration that enforced the new time

constraints. What this means is that the optimizer formed different domains and

moved the location where trust nodes where assigned in order to meet the new

constraints.

These findings are crucial, because they demonstrate that the proposed approach

to the implementation of the trust system is not only possible, but safe.
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5.4 Conclusion

This research demonstrated that the trust system proposed can be implemented

in a real life network by adding trust nodes to strategic nodes and combining it with

a methodical compartmentalization of the SCADA network that increase security of

the network. It indicated that we can obtained the benefits that the trust system

provides and the security enhancements that come with it by effectively determining

where this trust nodes should be placed in the network.

While the application of this proposed approach was focused on the electric

power grid. It can easily be applied to other industries in the critical infrastructure.

And also, they can be implemented in environments where requirements are not as

strict with similar results as well.

Finally, the proposed approach to trust system implementation appears to hold

great promise to facilitate greater interconnected communication in the electric

power grid. Additionally, this approach seeks to provide increased safety that can

result through secure message sharing, facilitated by the trust system and domain

grouping. This system is a step towards a comprehensive security architecture for

the power grid.

5.5 Significance of Research

The sector of our economy that this research targets is an extremely critical one.

It is one where although new communication paradigms and technologies are being

introduced without a thorough understanding of the consequences. Nonetheless, the

security issues are not being explored and solutions or alternatives are still in their

early stages. We have to remember as a nation that we are under a new type of

conflict and that our enemies are not government, or armies. We face a new type of

warfare that is not directed to our military defenses but to our society, to our

economy; and we need to protect these to the utmost. We cannot afford to ignore

security as a discipline and daily practice. This research is of great importance
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because it constitutes a move forward toward a secure and protected infrastructure,

so critical to our country.

This research brings together previous thesis efforts that proposed security

alternatives to improve the protection of the facility. This thesis implemented those

ideas and tested them against data that represents real world systems. The fact that

those ideas can be fielded and add critical security functions such as firewall, internal

traffic protection, trust level implementation, message encryption/decryption, and

other functions; without risking the safety of the facility is a step forward toward a

more secure operation at a time where is urgently needed to better protect our

critical infrastructure. Furthermore, these encouraging results represent are valuable

because this approach can be fielded without requiring interruption or shut down of

the system. It can be implemented almost transparent to operations.

5.6 Recommendations for future work

Although the results were very promising, there is further work to be done to

make it a more solid alternative. One is that the optimization model processed

could be processed utilizing a parallel processing and process more complex data

sets, as the 57 nodes was not run in its entirety since both operating systems

dumped the process when the operating system resources became scarce. Also, there

is the option of upgrading the random access memory installed in the Linux

computer, since it is a 64 bit architecture. This could potentially allow completing

processing the larger runs.

Additionally, the model could be modified and implemented as a quadratic

programming model. This may be useful as some of the constraints such as

restricting the range of nodes added to a domain so that the the domain node count

is close and the creation of large domains and very small domains is not allowed.

Also, the configurations that resulted from the experimentation in this research

may be tested in network simulators. Network simulators could be used to validate
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and support the results obtained by this research, by emulating and graphically

displaying the behavior of the network with a load of messages.
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VI. Appendix 1

The figure shown in this section, presents the configuration produced after

six hours of processing a 57 node network. This configuration was initially ran

without a time limitation. However, the process was halted after three days and no

output collected. The figure present several domains that have been formed but

most of them violate the constraint of domain contiguity we can see portions of one

domain in different parts of the network. This situation might have occurred

because the optimizer was not allowed to finish running, but instead forced its

termination by placing a time limit. Next page, will show its output.

Blank space left intentionally
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